Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (6) : 211-218     DOI: 10.6046/zrzyyg.2024336
|
A comparative study of the methods for delineating wildland-urban interfaces: A case study of Wood Buffalo, Alberta, Canada
WANG Zimeng1(), LIAO Yuanhong1, LOU Shuhan1, BAI Yuqi1,2()
1. Department of Earth System Science, Ministry of Education Ecological Field Station for East Asian Migratory Birds and Their Habitatses, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China
2. Tsinghua Urban Institute, Tsinghua University, Beijing 100084, China
Download: PDF(3158 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

A wildland-urban interface (WUI) refers to the area where residential buildings meet or intermingle with natural vegetation such as forests. The delineation of the WUI plays an important role in fire risk management, forest resource development and utilization, climate change responses, and sustainable socio-economic development. Current methods for WUI delineation are primarily developed and refined based on the definition given in the Federal Register of the United States. Based on indicators such as building density, vegetation coverage, and the distance between buildings and vegetation, these methods can be categorized into three types: building density priority, fuel grade priority, and overlap between building-vegetation buffer zones. Initially, this study presented a summary and comparison of relevant literature on the three types of methods. Then, Wood Buffalo in Alberta, Canada, an area frequently affected by wildfires, was selected to compare the three methods using data on Canadian building footprints released by Microsoft, global land cover from GLC_FCS30-2020, and local historical fire points and fire scars. The results indicate that the building density priority method exhibited the highest coincidence rate with historical wildfire records. However, it overlooked low-density buildings that were also at risk of wildfire. The fuel grade priority method produced a larger delineation area, with a lower coincidence rate with historical wildfire records since it focused excessively on the vegetation around buildings while neglecting the buildings themselves. In contrast, overlap between building-vegetation buffer zones presented the lowest coincidence rate with historical wildfire records and the smallest delineation area. This occurred primarily due to the short distance setting of buffer zones. This study reveals the strengths and limitations of existing methods, contributing to more scientifically robust and rational WUI delineation in the future while also providing references for decision-making in fire risk management and emergency responses.

Keywords wildland-urban interface (WUI)      building density priority method      fuel grade priority method      overlap between building-vegetation buffer zones      wildfire risk management     
ZTFLH:  TP79  
Issue Date: 31 December 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zimeng WANG
Yuanhong LIAO
Shuhan LOU
Yuqi BAI
Cite this article:   
Zimeng WANG,Yuanhong LIAO,Shuhan LOU, et al. A comparative study of the methods for delineating wildland-urban interfaces: A case study of Wood Buffalo, Alberta, Canada[J]. Remote Sensing for Natural Resources, 2025, 37(6): 211-218.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024336     OR     https://www.gtzyyg.com/EN/Y2025/V37/I6/211
作者 WUI子类 筛选要素及阈值 所用数据 年份 研究区
Schug等 [11] 交界WUI
和混合
WUI
利用500 m半径圆形移动窗口计算建筑密度和植被覆盖率
住房密度大于每16.19 hm21栋房屋,并且野生植被覆盖率超过50%或低于50%但位于大型密集植被区域的2.4 km范围内
土地覆盖数据
建筑面积占比数据
2023年 全球
Chen等[12] 交界WUI
和混合
WUI
建立400 m网格计算建筑密度和植被覆盖率
住房密度大于每16.19 hm21栋房屋,并且野生植被覆盖率超过50%或低于50%但位于大型密集植被区域的2.4 km范围内
土地覆盖数据
人口密度数据
建筑足迹数据
2024年 全球
Carlson等[10] 交界WUI
和混合
WUI
根据不同的邻域半径大小,确定划分WUI的范围,论文中选择了100 m,200 m,300 m,400 m,500 m和1 500 m
住房密度大于每16.19 hm21栋房屋,并且野生植被覆盖率超过50%或低于50%但位于大型密集植被区域的2.4 km范围内
建筑足迹数据
土地覆盖数据
2022年 美国
Johnston等[13] 住房WUI、工业WUI
和公共设施WUI
根据植被的可燃性和连通性算植被的权重燃料等级
根据不同的权重燃料等级创建可变宽度缓冲区域
冲区的最大宽度为2 400 m,燃料等级越高,燃烧成本越高,缓冲区越小
建筑足迹数据
土地覆盖数据
2018年 加拿大
Bar-Massada等[14] 交界WUI
和混合
WUI
建成区缓冲区100 m内的像元作为候选像元
候选像元500 m半径内植被密度>50%
候选像元距离大型植被斑块<600 m
建筑足迹数据
土地覆盖数据
2023年 欧盟
Modugno等[15] 距离建筑区域<200 m
距离野生植被区域<400 m
建筑位置数据
土地覆盖数据
2016年 欧盟
Tab.1  Summary table of some forest-town interface division methods
Fig.1  The location map of Wood Buffalo City
Fig.2  The building footprints of Wood Buffalo City
栅格值 种类 燃料等级
71 开阔常绿针叶林(0.15<fc<0.4) 1
72 闭阔常绿针叶林(fc>0.4) 1
81 开阔落叶针叶林(0.15<fc<0.4) 1
82 闭阔落叶针叶林(fc>0.4) 1
51 开阔常绿阔叶林 2
52 闭阔常绿阔叶林 2
61 开阔落叶阔叶林(0.15<fc<0.4) 2
62 闭阔落叶阔叶林(fc>0.4) 2
91 开阔混交叶片林(阔叶树和针叶树) 2
92 闭阔混交叶片林(阔叶树和针叶树) 2
120 灌木地 3
121 常绿灌木地 3
122 落叶灌木地 3
130 草地 3
152 稀疏灌木地(fc<0.15) 3
180 沼泽 4
150 稀疏植被(fc<0.15) 4
153 稀疏草本植被(fc<0.15) 5
11 草本植被覆盖 5
10 耕地 /
12 树木或灌木覆盖(果园) /
20 灌溉耕地 /
140 地衣和苔藓植被 /
190 不透水表面 /
200 裸地 /
201 固化裸地 /
202 非固化裸地 /
210 水体 /
220 永久性冰雪覆盖 /
250 填充值 /
Tab.2  Relative ranking of fuel levels for different land cover types (GLC-FCS30—2020)
Fig.3  Results of wildland-urban interface (WUI) delineation
Fig.4  Comparison chart of detailed results of different division methods
划分方法 建筑位置 对WUI建立的缓冲区距离/m
0 10 50 100
建筑密度优先 火迹地缓冲区内 18 908 18 925 18 954 18 975
非缓冲区内 2 304 2 367 2 414 2 445
燃料等级优先 火迹地缓冲区内 1 528 2 260 8 377 14 579
非缓冲区内 774 1 459 2 537 2 744
建筑植被缓冲区重合 火迹地缓冲区内 16 607 17 010 17 422 17 716
非缓冲区内 1 989 2 665 2 865 3 050
Tab.3  Statistical count of buildings at the different WUI of Wood Buffalo City (个)
划分方法 WUI总面
积/km2
火点数
量/个
WUI内的
火迹地面
积/km2
占总火迹
地面积比
例/%
占WUI面
积比例/%
建筑密度优先 298.23 655 59.85 0.17 20.071
燃料等级优先 1 682.16 427 277.23 0.82 16.481
建筑植被缓冲
区重合
261.22 629 36.94 0.11 14.143
Tab.4  Statistical count of area, fire-points, burned area at the different WUI of Wood Buffalo City
[1] Wu C, Sitch S, Huntingford C, et al. Reduced global fire activity due to human demography slows global warming by enhanced land carbon uptake[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(20):e2101186119.
[2] Kelley D I, Mathison C, Burton C, et al. Likely future (s) of global wildfires[R]. Copernicus Meetings, 2022.
[3] The UN Environment Programme. 2022.Spreading like Wildfire:The rising threat of extraordinary landscape fires[R].https://www.unep.org/news-and-stories/press-release/number-wildfires-rise-50-2100-and-governments-are-not-prepared.
url: https://www.unep.org/news-and-stories/press-release/number-wildfires-rise-50-2100-and-governments-are-not-prepared
[4] Radeloff V C, Hammer R B, Stewart S I, et al. The wildland-urban interface in the United States[J]. Ecological Applications, 2005, 15(3):799-805.
doi: 10.1890/04-1413 url: https://esajournals.onlinelibrary.wiley.com/doi/10.1890/04-1413
[5] Davis J B. The wildland-urban interface:Paradise or battleground?[J]. Journal of Forestry, 1990, 88(1):26-31.
[6] Platt R V. The wildland-urban interface:Evaluating the definition effect[J]. Journal of Forestry, 2010, 108(1):9-15.
doi: 10.1093/jof/108.1.9 url: https://academic.oup.com/jof/article/108/1/9/4599384
[7] Godoy M M, Martinuzzi S, Masera P, et al. Forty years of wildland urban interface growth and its relation with wildfires in central-western Chubut,Argentina[J]. Frontiers in Forests and Global Change, 2022,5:850543.
[8] Berg A K, Connor D S, Kedron P, et al. Remapping California’s wildland urban interface:A property-level time-space framework,2000-2020[J]. Applied Geography, 2024,167:103271.
[9] Huang Y, Jin Y. Aerial imagery-based building footprint detection with an integrated deep learning framework:Applications for fine scale wildland-urban interface mapping[J]. Remote Sensing, 2022, 14(15):3622.
doi: 10.3390/rs14153622 url: https://www.mdpi.com/2072-4292/14/15/3622
[10] Carlson A R, Helmers D P, Hawbaker T J, et al. The wildland-urban interface in the United States based on 125 million building locations[J]. Ecological Applications, 2022, 32(5):e2597.
doi: 10.1002/eap.2597 pmid: 35340097
[11] Schug F, Bar-Massada A, Carlson A R, et al. The global wildland-urban interface[J]. Nature, 2023, 621(7977):94-99.
doi: 10.1038/s41586-023-06320-0
[12] Chen B, Wu S, Jin Y, et al. Wildfire risk for global wildland-urban interface areas[J]. Nature Sustainability, 2024, 7(4):474-484.
doi: 10.1038/s41893-024-01291-0
[13] Johnston L M, Flannigan M D. Mapping Canadian wildland fire interface areas[J]. International Journal of Wildland Fire, 2018, 27(1):1.
doi: 10.1071/WF16221 url: https://connectsci.au/wf/article/27/1/1/21340/Mapping-Canadian-wildland-fire-interface-areas
[14] Bar-Massada A, Alcasena F, Schug F, et al. The wildland-urban interface in Europe:Spatial patterns and associations with socioeconomic and demographic variables[J]. Landscape and Urban Planning, 2023,235:104759.
[15] Modugno S, Balzter H, Cole B, et al. Mapping regional patterns of large forest fires in wildland-urban interface areas in Europe[J/OL]. Journal of Environmental Management, 2016,172:112-126.
[16] Natural Resources Canada. Canadian wildland fire information system[R].http://bit.ly/WUI-088,2019.
url: http://bit.ly/WUI-088,2019
[17] Beverly J L, Bothwell P. Wildfire evacuations in Canada 1980-2007[J]. Natural Hazards, 2011, 59(1):571-596.
doi: 10.1007/s11069-011-9777-9 url: http://link.springer.com/10.1007/s11069-011-9777-9
[18] Giglio L, Boschetti L, Roy D, et al. Collection 6 MODIS burned area product user’s guide version 1.0[J]. NASA EOSDIS Land Processes DAAC:Sioux Falls,SD,USA, 2016:11-27.
[19] Bar-Massada A, Stewart S I, Hammer R B, et al. Using structure locations as a basis for mapping the wildland urban interface[J]. Journal of Environmental Management, 2013,128:540-547.
[20] Li S, Dao V, Kumar M, et al. Mapping the wildland-urban interface in California using remote sensing data[J]. Scientific Reports, 2022, 12(1):5789.
doi: 10.1038/s41598-022-09707-7 pmid: 35388077
[21] Glickman D, Babbitt B. Urban wildland interface communities within the vicinity of federal lands that are at high risk from wildfire[J]. Federal Register, 2001, 66(3):751-777.
[22] Chas-Amil M L, Touza J, García-Martínez E. Forest fires in the wildland-urban interface:A spatial analysis of forest fragmentation and human impacts[J]. Applied Geography, 2013,43:127-137.
[23] Herrero-Corral G, Jappiot M, Bouillon C, et al. Application of a geographical assessment method for the characterization of wildland-urban interfaces in the context of wildfire prevention:A case study in western Madrid[J]. Applied Geography, 2012, 35(1/2):60-70.
doi: 10.1016/j.apgeog.2012.05.005 url: https://linkinghub.elsevier.com/retrieve/pii/S0143622812000550
[24] Kumar M, Li S, Nguyen P, et al. Examining the existing definitions of wildland-urban interface for California[J]. Ecosphere, 2022, 13(12):e4306.
doi: 10.1002/ecs2.v13.12 url: https://esajournals.onlinelibrary.wiley.com/toc/21508925/13/12
[1] LIU Yufu, BAI Yuqi. Meteorological data-sharing system of the World Meteorological Organization[J]. Remote Sensing for Natural Resources, 2025, 37(6): 1-9.
[2] LIU Yufu, BAI Yuqi. Global sharing system of Earth simulation data in the Coupled Model Intercomparison Project[J]. Remote Sensing for Natural Resources, 2025, 37(6): 10-21.
[3] ZHANG Jinhua, HU Zhongwen, ZHANG Yinghui, ZHANG Qian, WANG Jingzhe, WU Guofeng. Mapping mountain vegetation using realistic 3D models integrating optical images and light detection and ranging data[J]. Remote Sensing for Natural Resources, 2025, 37(6): 107-117.
[4] GE Lihua, WANG Peng, ZHANG Yanqin, ZHAO Shuanglin. Deep forest-based model for detecting changes in remote sensing images[J]. Remote Sensing for Natural Resources, 2025, 37(6): 118-127.
[5] XUAN Jiabin, LI Ruren, FU Wenxue. Deformation monitoring using time-series InSAR with dual-polarization optimization[J]. Remote Sensing for Natural Resources, 2025, 37(6): 128-137.
[6] DENG Yuxi, LI Jiatian, LIU Jiayin, LUO Xin, YANG Tao. A remote sensing image matching network combining a large selective kernel-enhanced convolution module[J]. Remote Sensing for Natural Resources, 2025, 37(6): 138-147.
[7] LI Kaixuan, LIU Junwei, WANG Zhibo, JIANG Wenlong, CAI Hanlin, LEI Shaogang, YANG Yongjun. Extracting information on benches in open-pit coal mines based on Sentinel-2 images and the BenchSegNet model[J]. Remote Sensing for Natural Resources, 2025, 37(6): 148-155.
[8] YU Bing, ZHANG Chunyu, WANG Jinri, LIU Guoxiang, DAI Keren, MA Deying. SBAS-InSAR-based long time-series deformation monitoring and landslide hazard identification in the Baihetan reservoir area[J]. Remote Sensing for Natural Resources, 2025, 37(6): 156-168.
[9] SUN Yinsuo, FANG Xiao, ZHOU Dongmao, XUE Hongwen, SU Junwu. Exploring the spatiotemporal differentiation and driving factors of vegetation dynamics in the Loess Plateau using the optimal parameter-based geographical detector model[J]. Remote Sensing for Natural Resources, 2025, 37(6): 169-181.
[10] LIU Jinyu, HU Jinshan, KANG Jianrong, ZHU Yihu, WANG Shengli. Remote sensing-based assessment of ecological quality in open-pit coal mining areas based on the pressure-state-response and time series prediction models[J]. Remote Sensing for Natural Resources, 2025, 37(6): 182-190.
[11] ZHANG Yiwen, LI Fengxia, ZHANG Rui, FENG Xiaogang, LI Meng, HU Moqing. Spatiotemporal evolution and trade-off/synergy analysis of ecosystem services in the Xi’an section of the Qinling Mountains[J]. Remote Sensing for Natural Resources, 2025, 37(6): 191-200.
[12] ZHANG Ying, CHEN Yunchun, GUO Xiaofei, WU Xiaocong, CHEN Fenglin, ZENG Weijun. Fine-scale information extraction of water bodies in the Erhai Lake Basin based on an improved DeepLabV3plus architecture[J]. Remote Sensing for Natural Resources, 2025, 37(6): 201-210.
[13] SHI Xiaochen, LUO Chenying, ZHANG Chao, WANG Wei, CHEN Chang, BAI Xuechuan, LI Shaoshuai. Ecological protection assessment of cultivated land in the black soil region based on remote sensing data[J]. Remote Sensing for Natural Resources, 2025, 37(6): 219-227.
[14] ZANG Mingrun, LIAO Yuanhong, CHEN Zhou, BAI Yuqi. Analysis and summary of land cover classification systems[J]. Remote Sensing for Natural Resources, 2025, 37(6): 22-40.
[15] LI Chunyi, ZHAO Pengxiang, DING Laizhong, WANG Wenjie, GAO Yantao, MAI Zhiyao, GUO Yaxing. Deep learning-based remote sensing interpretation and its reliability verification for hydroxyl alteration information in the East Qinling Mountains[J]. Remote Sensing for Natural Resources, 2025, 37(6): 228-240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech