Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (6) : 118-127     DOI: 10.6046/zrzyyg.2024327
|
Deep forest-based model for detecting changes in remote sensing images
GE Lihua1,2(), WANG Peng3,4(), ZHANG Yanqin1, ZHAO Shuanglin5
1. College of Electronics and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2. Hebei Key Laboratory of Resource and Environmental Disaster Mechanism and Risk Monitoring, Langfang 065201, China
3. Key Laboratory of Airborne Geophysics and Remote Sensing Geology, Ministry of Natural Resources, Beijing 100083, China
4. Shenzhen Research Institute, Nanjing University of Aeronautics and Astronautics, Shenzhen 518110, China
5. Hunan Institute of Geological Disaster Investigation and Monitoring, Changsha 416099, China
Download: PDF(3458 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The deep learning-based models currently available for detecting changes in remote sensing images face several challenges, including limited multi-granularity, poor classification performance of networks, high sensitivity to parameters, and great efforts in parameter adjustment. To address these challenges, this study proposed a deep forest-based model for detecting changes in remote sensing images. Initially, preliminary results were determined using a basic change detection method. Then, the results were optimized using the multi-granularity scanning characteristics and strong data classification of deep forest sub-networks. In this manner, the final change detection results were obtained. Verification experiments conducted on the LEVIR-CD and SYSU-CD datasets using various common change detection models indicated that the proposed deep forest-based model significantly outperformed other models in terms of precision, F1 score, and recall. Additionally, the proposed model exhibited strong adaptability on small datasets, as verified by loss function comparison, small-sample experiments, and ablation studies. This adaptability can reduce the complexity of parameter adjustment and address the issues that other deep learning sub-networks fail to be applicable to medium and small datasets.

Keywords remote sensing      change detection      deep forest      multi-granularity scanning      cascade forest     
ZTFLH:  TP79  
  TN912.3  
Issue Date: 31 December 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lihua GE
Peng WANG
Yanqin ZHANG
Shuanglin ZHAO
Cite this article:   
Lihua GE,Peng WANG,Yanqin ZHANG, et al. Deep forest-based model for detecting changes in remote sensing images[J]. Remote Sensing for Natural Resources, 2025, 37(6): 118-127.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024327     OR     https://www.gtzyyg.com/EN/Y2025/V37/I6/118
Fig.1  Overall flow chart of CDMDF
Fig.2  A schematic representation of the multi-grained scanning
Fig.3  A schematic representation of the cascade forest
Fig.4  Example of LEVIR-CD dataset
Fig.5  Example of SYSU-CD dataset
Fig.6  Results of the different methods on the LEVIR-CD test sets
Fig.7  Results of the different methods on the SYSU-CD test sets
方法 LEVIR-CD SYSU-CD
准确率 召回率 F1 准确率 召回率 F1
FC-EF 0.922 0.773 0.841 0.721 0.902 0.801
FC-EF_DF 0.942 0.966 0.954 0.804 0.827 0.815
FC-Siam-conc 0.910 0.850 0.879 0.695 0.831 0.757
FC-Siam-conc_DF 0.927 0.935 0.930 0.783 0.853 0.817
FC-Siam-diff 0.914 0.861 0.887 0.991 0.632 0.772
FC-Siam-diff_DF 0.931 0.952 0.941 0.988 0.805 0.887
SNUnet 0.864 0.947 0.904 0.689 0.718 0.703
SNUnet_DF 0.939 0.933 0.936 0.855 0.926 0.889
DTCDSCN 0.883 0.904 0.893 0.810 0.857 0.833
DTCDSCN_DF 0.918 0.887 0.902 0.807 0.869 0.837
STANet 0.918 0.833 0.873 0.792 0.838 0.814
STANet_DF 0.924 0.867 0.894 0.903 0.806 0.852
Tab.1  Comparison of the two test sets
损失函数 准确率 召回率 F1
交叉熵损失 0.942 0.966 0.954
均方误差损失 0.902 0.979 0.939
平方损失 0.948 0.920 0.934
焦点损失 0.946 0.951 0.948
Tab.2  The effect of different loss functions
Fig.8  Results of small sample datasets on the LEVIR-CD
方法 原始数据集 小数据集
准确率 召回率 F1 准确率 召回率 F1
FC-EF 0.922 0.773 0.841 0.817 0.742 0.778
FC-EF_DF 0.942 0.966 0.954 0.920 0.931 0.925
FC-Siam-conc 0.910 0.850 0.879 0.883 0.752 0.812
FC-Siam-conc_DF 0.927 0.935 0.930 0.920 0.844 0.880
FC-Siam-diff 0.914 0.861 0.887 0.835 0.786 0.810
FC-Siam-diff_DF 0.931 0.952 0.941 0.897 0.904 0.900
SNUnet 0.864 0.947 0.904 0.833 0.898 0.864
SNUnet_DF 0.939 0.933 0.936 0.879 0.903 0.891
DTCDSCN 0.883 0.904 0.893 0.796 0.847 0.821
DTCDSCN_DF 0.918 0.887 0.902 0.880 0.862 0.871
STANet 0.918 0.833 0.873 0.801 0.799 0.799
STANet_DF 0.924 0.867 0.894 0.877 0.830 0.853
Tab.3  The effect of the datasets size
Fig.9  Comparison of 2 post-processing methods
方法 平均运行时间 增加的时间
FC-EF 10.08 2.12
FC-EF_DF 12.20
FC-Siam-conc 10.53 2.28
FC-Siam-conc_DF 12.81
FC-Siam-diff 9.41 2.06
FC-Siam-diff_DF 11.47
SNUnet 10.49 2.35
SNUnet_DF 12.84
DTCDSCN 16.19 2.26
DTCDSCN_DF 18.45
Tab.4  The effect of the deep forest module on running time (ms/张)
[1] Singh A. Review article digital change detection techniques using remotely-sensed data[J]. International Journal of Remote Sensing, 1989, 10(6):989-1003.
doi: 10.1080/01431168908903939 url: https://www.tandfonline.com/doi/full/10.1080/01431168908903939
[2] Huang B, Song H, Cui H, et al. Spatial and spectral image fusion using sparse matrix factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3):1693-1704.
doi: 10.1109/TGRS.2013.2253612 url: https://ieeexplore.ieee.org/document/6516902/
[3] Wang P, Wang L, Leung H, et al. Super-resolution mapping based on spatial-spectral correlation for spectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3):2256-2268.
doi: 10.1109/TGRS.36 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=36
[4] Wang Q, Ding X, Tong X, et al. Spatio-temporal spectral unmixing of time-series images[J]. Remote Sensing of Environment, 2021,259:112407.
[5] Wang P, Yao H, Li C, et al. Multiresolution analysis based on dual-scale regression for pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021,60:5406319.
[6] Marin C, Bovolo F, Bruzzone L. Building change detection in multitemporal very high resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5):2664-2682.
doi: 10.1109/TGRS.2014.2363548 url: http://ieeexplore.ieee.org/document/6948368/
[7] Huang X, Zhang L, Zhu T. Building change detection from multitemporal high-resolution remotely sensed images based on a morphological building index[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1):105-115.
doi: 10.1109/JSTARS.4609443 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
[8] Mahdavi S, Salehi B, Huang W, et al. A PolSAR change detection index based on neighborhood information for flood mapping[J]. Remote Sensing, 2019, 11(16):1854.
doi: 10.3390/rs11161854 url: https://www.mdpi.com/2072-4292/11/16/1854
[9] Huang B, Song H. Spatiotemporal reflectance fusion via sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10):3707-3716.
doi: 10.1109/TGRS.2012.2186638 url: http://ieeexplore.ieee.org/document/6169983/
[10] He D, Zhong Y, Wang X, et al. Deep convolutional neural network framework for subpixel mapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11):9518-9539.
doi: 10.1109/TGRS.2020.3032475 url: https://ieeexplore.ieee.org/document/9258409/
[11] Gong M, Zhao J, Liu J, et al. Change detection in synthetic aperture Radar images based on deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(1):125-138.
doi: 10.1109/TNNLS.2015.2435783 pmid: 26068879
[12] 史文中, 张鹏林, 吕志勇, 等. 地理国情综合指数及其计算模型研究[J]. 测绘地理信息, 2016, 41(1):1-6.
[12] Shi W Z, Zhang P L, Lyu Z Y, et al. Composite index and calculation model for national geographical state[J]. Journal of Geoma-tics, 2016, 41(1):1-6.
[13] 李德仁, 眭海刚, 单杰. 论地理国情监测的技术支撑[J]. 武汉大学学报(信息科学版), 2012, 37(5):505-512,502.
[13] Li D R, Sui H G, Shan J. Discussion on key technologies of geographic national conditions monitoring[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5):505-512,502.
[14] Chen C F, Son N T, Chang N B, et al. Multi-decadal mangrove forest change detection and prediction in Honduras,Central America,with Landsat imagery and a Markov chain model[J]. Remote Sensing, 2013, 5(12):6408-6426.
doi: 10.3390/rs5126408 url: https://www.mdpi.com/2072-4292/5/12/6408
[15] Mei S, Li X, Liu X, et al. Hyperspectral image classification using attention-based bidirectional long short-term memory network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021,60:5509612.
[16] Adão T, Hruška J, Pádua L, et al. Hyperspectral imaging:A review on UAV-based sensors,data processing and applications for agriculture and forestry[J]. Remote Sensing, 2017, 9(11):1110.
doi: 10.3390/rs9111110 url: https://www.mdpi.com/2072-4292/9/11/1110
[17] 李淑坤, 李培军, 程涛. 加入多时相纹理的遥感变化检测[J]. 国土资源遥感, 2009, 21(3):35-40.doi:10.6046/gtzyyg.2009.03.07.
[17] Li S K, Li P J, Cheng T. Remote sensing change detection by inclusion of multitemporal texture[J]. Remote Sensing for Land and Resources, 2009, 21(3):35-40.doi:10.6046/gtzyyg.2009.03.07.
[18] Sivic, Zisserman. Video Google:A text retrieval approach to object matching in videos[C]// Proceedings Ninth IEEE International Conference on Computer Vision. October 13-16,2003, Nice,France.IEEE, 2003:1470-1477.
[19] Malila W. Change vector analysis:An approach for detecting forest changes with Landsat[C]// LARS symposia.1980:385.
[20] 邸凤萍, 朱重光, 丁玲. 方向矢量法在城市土地利用变化检测中的应用[J]. 计算机工程, 2008, 34(2):253-254.
doi: 10.3969/j.issn.1000-3428.2008.02.085
[20] Di F P, Zhu C G, Ding L. Application of direction-vector analysis in change detection of urban land-use[J]. Computer Engineering, 2008, 34(2):253-254.
doi: 10.1007/s00366-017-0537-7 url: http://link.springer.com/10.1007/s00366-017-0537-7
[21] Fang S, Li K, Shao J, et al. SNUNet-CD:A densely connected Siamese network for change detection of VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2021,19:8007805.
[22] Li K, Li Z, Fang S. Siamese NestedUNet networks for change detection of high resolution satellite image[C]// 2020 International Conference on Control,Robotics and Intelligent System.Xiamen China. ACM, 2020:42-48.
[23] Daudt R C, Le Saux B, Boulch A. Fully convolutional Siamese networks for change detection[C]// 2018 25th IEEE International Conference on Image Processing (ICIP).October 7-10,2018,Athens,Greece.IEEE, 2018:4063-4067.
[24] Daudt R C. Convolutional neural networks for change analysis in earth observation images with noisy labels and domain shifts[D]. Paris: Institut Polytechnique de Paris, 2020.
[25] Liu Y, Pang C, Zhan Z, et al. Building change detection for remote sensing images using a dual-task constrained deep Siamese convolutional network model[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(5):811-815.
doi: 10.1109/LGRS.2020.2988032
[26] Chen H, Shi Z. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10):1662.
doi: 10.3390/rs12101662 url: https://www.mdpi.com/2072-4292/12/10/1662
[27] Fang H, Du P, Wang X. A novel unsupervised binary change detection method for VHR optical remote sensing imagery over urban areas[J]. International Journal of Applied Earth Observation and Geoinformation, 2022,108:102749.
[28] 杜俊翰, 赖健, 王雪, 等. 基于多尺度注意力特征与孪生判别的遥感影像变化检测及其抗噪性研究[J]. 数据采集与处理, 2022, 37(1):35-48.
[28] Du J H, Lai J, Wang X, et al. Change detection of remote sensing image based on Siamese multi-scale attention network and its anti-noise ability research[J]. Journal of Data Acquisition and Processing, 2022, 37(1):35-48.
[29] Wang D, Chen X, Guo N, et al. STCD:Efficient Siamese transformers-based change detection method for remote sensing images[J]. Geo-Spatial Information Science, 2024, 27(4):1192-1211.
doi: 10.1080/10095020.2022.2157762 url: https://www.tandfonline.com/doi/full/10.1080/10095020.2022.2157762
[30] Zhou Z H, Feng J. Deep forest[J]. National science review, 2019, 6(1):74-86.
doi: 10.1093/nsr/nwy108 url: https://academic.oup.com/nsr/article/6/1/74/5123737
[31] 杨惠. 基于深度森林的SAR图像变化检测技术研究[D]. 西安: 西安电子科技大学, 2019.
[31] Yang H. Research on SAR image change detection technology based on deep forest[D]. Xi’an: Xidian University, 2019.
[32] 李恒. 基于遥感影像的森林变化检测方法研究[D]. 长沙: 中南林业科技大学, 2022.
[32] Li H. Research on forest change detection method based on remote sensing image[D]. Changsha: Central South University of Forestry and Technology, 2022.
[33] Breiman L. Random forests[J]. Machine Learning, 2001,45:5-32.
[1] LI Kaixuan, LIU Junwei, WANG Zhibo, JIANG Wenlong, CAI Hanlin, LEI Shaogang, YANG Yongjun. Extracting information on benches in open-pit coal mines based on Sentinel-2 images and the BenchSegNet model[J]. Remote Sensing for Natural Resources, 2025, 37(6): 148-155.
[2] LIU Jinyu, HU Jinshan, KANG Jianrong, ZHU Yihu, WANG Shengli. Remote sensing-based assessment of ecological quality in open-pit coal mining areas based on the pressure-state-response and time series prediction models[J]. Remote Sensing for Natural Resources, 2025, 37(6): 182-190.
[3] ZHANG Ying, CHEN Yunchun, GUO Xiaofei, WU Xiaocong, CHEN Fenglin, ZENG Weijun. Fine-scale information extraction of water bodies in the Erhai Lake Basin based on an improved DeepLabV3plus architecture[J]. Remote Sensing for Natural Resources, 2025, 37(6): 201-210.
[4] SHI Xiaochen, LUO Chenying, ZHANG Chao, WANG Wei, CHEN Chang, BAI Xuechuan, LI Shaoshuai. Ecological protection assessment of cultivated land in the black soil region based on remote sensing data[J]. Remote Sensing for Natural Resources, 2025, 37(6): 219-227.
[5] WANG Haochen, HE Peng, CHEN Hong, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. Analyzing water area changes and inundation trends in Siling Co during 1995—2023 based on multi-source remote sensing[J]. Remote Sensing for Natural Resources, 2025, 37(6): 251-262.
[6] LIAO Yuanhong, BAI Yuqi. Consistency analysis of mapping products for wetlands of international importance in China[J]. Remote Sensing for Natural Resources, 2025, 37(6): 41-48.
[7] ZHANG Jie, WANG Hengyou, HUO Lianzhi. Pansharpening of hyperspectral remote sensing images based on feature enhancement and Three-Stream Transformer[J]. Remote Sensing for Natural Resources, 2025, 37(6): 97-106.
[8] HE Haiyang, LI Shijie, QIN Haoyang, LIU Xiaoyu, WANG Siqi, SUN Xu. Altered mineral mapping and characteristic analysis in Qianhongquan Area,Beishan,Gansu Province,based on hyperspectral data from the ZY-1 02D satellite[J]. Remote Sensing for Natural Resources, 2025, 37(5): 195-205.
[9] LANG Yunfan, LI Yimin, LI Yuanting, LIU Miao, BAI Kebing. Exploring spatiotemporal characteristics of economic development in Yunnan and Myanmar based on nighttime light remote sensing[J]. Remote Sensing for Natural Resources, 2025, 37(5): 233-242.
[10] ZOU Juan, YU Shuchen, HE Qiuhua, XU Zhibin, YIN Xianghong, ZOU Cong. Spatiotemporal evolution of the Zhuzikou delta in Dongting Lake from 1933 to 2024[J]. Remote Sensing for Natural Resources, 2025, 37(5): 24-31.
[11] ZHANG Ping, PANG Yong, CHEN Qingsong, YANG Kun, ZOU Zujian, HOU Yunhua, WANG Caiqiong, FENG Siqi. Dynamic monitoring and driving factor analysis for eco-environmental quality in alpine gorges of northwest Yunnan based on a remote sensing ecological index model[J]. Remote Sensing for Natural Resources, 2025, 37(5): 243-253.
[12] YANG Zhen, YANG Minglong, LI Guozhu, XIA Yonghua, YU Ting, YAN Zhengfei, LI Wantao. Relationship between modified water stress-based NPP inversion and soil moisture in typical plateau basins[J]. Remote Sensing for Natural Resources, 2025, 37(5): 267-277.
[13] HE Weirong, HUO Runbin, LI Donghui, ZHANG Fengshan, WANG Xinfeng. GIS-based analysis of dynamic changes and driving forces for natural lakes in Anhui Province[J]. Remote Sensing for Natural Resources, 2025, 37(5): 32-43.
[14] GONG Shaojun, CHEN Chao, FAN Jing. A precise coastline extraction method using surface moisture content and long-time-series remote sensing imagery[J]. Remote Sensing for Natural Resources, 2025, 37(5): 53-61.
[15] WU Zhijun, CONG Ming, XU Miaozhong, HAN Ling, CUI Jianjun, ZHAO Chaoying, XI Jiangbo, YANG Chengsheng, DING Mingtao, REN Chaofeng, GU Junkai, PENG Xiaodong, TAO Yiting. Self-learning segmentation of high-resolution remote sensing images based on visual dual-drive cognition[J]. Remote Sensing for Natural Resources, 2025, 37(5): 73-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech