Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (3) : 253-264     DOI: 10.6046/zrzyyg.2024065
|
Spatiotemporal evolution of ecological vulnerability in Xinjiang and its response to drought
LU Jiantao1(), ZHENG Jianghua1,2(), PENG Jian3, XIAO Xianghua3, LI Gangyong3, LIU Liang1, WANG Renjun1, ZHANG Jianli3
1. College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
2. Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China
3. Xinjiang Grassland Station, Urumqi 830049, China
Download: PDF(6010 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Global warming has exacerbated drought conditions, posing a significant threat to ecosystem structures and functions. Analyzing the spatiotemporal evolution of ecological vulnerability and its response to drought plays a significant role in achieving regional high-quality and sustainable development. With Xinjiang as the study area, this study constructed an assessment index system for ecological vulnerability based on the ecological sensitivity-resilience-pressure (SRP) model. Using methods like local spatial autocorrelation, coefficient of variation, slope trend analysis, and Hurst exponent, this study assessed the ecological vulnerability in Xinjiang from 2000 to 2020, followed by future trend prediction. Moreover, this study explored the impacts of drought on ecological vulnerability using the standardized precipitation evapotranspiration index (SPEI). The results indicate that the overall ecological vulnerability was relatively high in Xinjiang, with its spatial distribution characterized by significant regional differences and spatial aggregation. The SPEI value showed a downward trend at an average annual rate of 0.093 9, suggesting a significant worsening trend of regional aridification. The area featuring a negative correlation between drought and ecological vulnerability represented 54.1 %, indicating that ecological vulnerability in most areas decreased with improved regional moisture conditions. The stable distribution area of ecological vulnerability constituted 77.8 %, dominated by severely and extremely vulnerable areas. In the future, the majority of Xinjiang (61.3 %) is projected to witness decreased ecological vulnerability and enhanced ecological quality. Overall, the results of this study deepen the understanding of the status and driving mechanism of ecological vulnerability in Xinjiang, providing a scientific reference and decision-making basis for enhancing the adaptability of regional ecosystems to environmental changes.

Keywords ecological vulnerability      ecological sensitivity-resilience-pressure (SRP) model      standardized precipitation evapotranspiration index (SPEI)      correlation analysis      future trend prediction     
ZTFLH:  TP79  
Issue Date: 01 July 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiantao LU
Jianghua ZHENG
Jian PENG
Xianghua XIAO
Gangyong LI
Liang LIU
Renjun WANG
Jianli ZHANG
Cite this article:   
Jiantao LU,Jianghua ZHENG,Jian PENG, et al. Spatiotemporal evolution of ecological vulnerability in Xinjiang and its response to drought[J]. Remote Sensing for Natural Resources, 2025, 37(3): 253-264.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024065     OR     https://www.gtzyyg.com/EN/Y2025/V37/I3/253
Fig.1  Schematic diagram of the research area
要素层 指标层 指标性质 权重
生态敏感性 高程
坡度
地形起伏度


0.062
0.043
0.027
景观破碎度
土壤侵蚀程度
年均降水量


0.085
0.092
0.055
年均气温 0.036
生态恢复力 FVC
景观干扰度指数
NPP


0.125
0.145
0.130
生态压力度 人均GDP
人口密度
人类足迹数据


0.044
0.074
0.082
Tab.1  Assessment index system for ecological vulnerability
等级 取值范围 脆弱性
分类
恢复力
等级
生态特征
(0,0.2] 微度脆弱 5级 生态功能完整,抗外界干扰和自我恢复能力强
(0.2,0.4] 轻度脆弱 4级 生态功能较为完善,抗外界干扰和自我恢复能力较强
(0.4,0.6] 中度脆弱 3级 生态功能一般,抗外界干扰和自我恢复能力较弱
(0.6,0.8] 重度脆弱 2级 生态功能部分退化,抗外界干扰和自我恢复能力弱
(0.8,1] 极度脆弱 1级 生态功能严重退化,抗外界干扰和自我恢复能力差
Tab.2  Classification criteria of ecological vulnerability in Xinjiang
取值范围 变化趋势
θslope<0,0.5<H<1 持续改善
θslope<0,0<H<0.5 反持续性改善
θslope>0,0.5<H<1 持续恶化
θslope>0,0<H<0.5 反持续性恶化
H=0.5 无法预测
Tab.3  Classification of future trends
Fig.2  Interannual variation of SPEI and M-K mutation test in Xinjiang
Fig.3  Spatial distribution of annual SPEI in Xinjiang
Fig.4  Interannual change trend of EVI and the proportion of vulnerability area during 2000 to 2020
Fig.5  Sanji diagram of ecological vulnerability transfer matrix in Xinjiang from 2000 to 2020 (unit: 104 km2)
Fig.6  Spatial pattern distribution of ecosystem resilience
Fig.7  Spatial pattern distribution of ecosystem vulnerability
Fig.8  Spatial clustering map of vulnerability index in Xinjiang from 2000 to 2020
Fig.9  EVI coefficient of variation and its spatial stability diagram
Fig.10  Correlation coefficient and classification results of significance between SPEI and resilience
Fig.11  Correlation coefficient and classification results of significance between SPEI and EVI
Fig.12  Change rate and future trend of EVI
[1] Turner B L, Kasperson R E, Matson P A, et al. A framework for vulnerability analysis in sustainability science[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(14):8074-8079.
doi: 10.1073/pnas.1231335100 pmid: 12792023
[2] 周波涛. 全球气候变暖:浅谈从AR5到AR6的认知进展[J]. 大气科学学报, 2021, 44(5):667-671.
[2] Zhou B T. Global warming:Scientific progress from AR5 to AR6[J]. Transactions of Atmospheric Sciences, 2021, 44(5):667-671.
[3] Li Y, Xie Z X, Qin Y C, et al. Drought under global warming and climate change:An empirical study of the Loess Plateau[J]. Sustainability, 2019, 11(5):1281.
[4] Senf C, Buras A, Zang C S, et al. Excess forest mortality is consis-tently linked to drought across Europe[J]. Nature Communications, 2020, 11(1):6200.
[5] Kang H, Sridhar V, Mainuddin M, et al. Future rice farming threatened by drought in the Lower Mekong Basin[J]. Scientific Reports, 2021, 11(1):9383.
doi: 10.1038/s41598-021-88405-2 pmid: 33931657
[6] Anderegg W R L, Trugman A T, Bowling D R, et al. Plant functional traits and climate influence drought intensification and land-atmosphere feedbacks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(28):14071-14076.
doi: 10.1073/pnas.1904747116 pmid: 31235581
[7] 乔青, 高吉喜, 王维, 等. 生态脆弱性综合评价方法与应用[J]. 环境科学研究, 2008, 21(5):117-123.
[7] Qiao Q, Gao J X, Wang W, et al. Method and application of ecolo-gical frangibility assessment[J]. Research of Environmental Sciences, 2008, 21(5):117-123.
[8] Li F, Zhang Y, Xu Z, et al. The impact of climate change on runoff in the southeastern Tibetan Plateau[J]. Journal of Hydrology, 2013,505:188-201.
[9] Vinagre C, Leal I, Mendonça V, et al. Vulnerability to climate warming and acclimation capacity of tropical and temperate coastal organisms[J]. Ecological Indicators, 2016,62:317-327.
[10] 贾晶晶, 赵军, 王建邦, 等. 基于SRP模型的石羊河流域生态脆弱性评价[J]. 干旱区资源与环境, 2020, 34(1):34-41.
[10] Jia J J, Zhao J, Wang J B, et al. Ecological vulnerability assessment of Shiyang River Basin based on SRP model[J]. Journal of Arid Land Resources and Environment, 2020, 34(1):34-41.
[11] 赵志荣, 许端阳, 张绪教, 等. 2000—2015年内蒙古地区土地沙漠化脆弱性评估[J]. 水土保持研究, 2020, 27(1):168-175.
[11] Zhao Z R, Xu D Y, Zhang X J, et al. Assessment of the land desertification vulnerability in Inner Mongolia during the period 2000—2015[J]. Research of Soil and Water Conservation, 2020, 27(1):168-175.
[12] 沈伊丽, 蔡建国, 舒美英. 基于GIS的浙江海宁尖山新区景观规划用地适宜性评价[J]. 测绘与空间地理信息, 2022, 45(10):23-26.
[12] Shen Y L, Cai J G, Shu M Y. Land suitability evaluation for landscape planning in Jianshan new district based on GIS[J]. Geoma-tics and Spatial Information Technology, 2022, 45(10):23-26.
[13] 张学渊, 魏伟, 周亮, 等. 西北干旱区生态脆弱性时空演变分析[J]. 生态学报, 2021, 41(12):4707-4719.
[13] Zhang X Y, Wei W, Zhou L, et al. Analysis on spatio-temporal evolution of ecological vulnerability in arid areas of Northwest China[J]. Acta Ecologica Sinica, 2021, 41(12):4707-4719.
[14] 贾路, 于坤霞, 李占斌, 等. 长江经济带景观格局对生态系统服务价值影响的概率评估[J]. 农业工程学报, 2023, 39(15):217-227.
[14] Jia L, Yu K X, Li Z B, et al. Probability evaluation of the impact of landscape pattern on ecosystem service value in the Yangtze River Economic Belt[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(15):217-227.
[15] 邰苏日嘎拉, 王永亮, 陈国栋, 等. 基于SRP模型的内蒙古鄂伦春地区生态脆弱性评价[J]. 中国地质, 2024, 51(1):234-247.
[15] Tai S, Wang Y L, Chen G D, et al. Ecological vulnerability assessment of Oroqen Region in the Inner Mongolia based on SRP model[J]. Geology in China, 2024, 51(1):234-247.
[16] 孙桂丽, 陆海燕, 郑佳翔, 等. 新疆生态脆弱性时空演变及驱动力分析[J]. 干旱区研究, 2022, 39(1):258-269.
doi: 10.13866/j.azr.2022.01.25
[16] Sun G L, Lu H Y, Zheng J X, et al. Spatio-temporal variation of ecological vulnerability in Xinjiang and driving force analysis[J]. Arid Zone Research, 2022, 39(1):258-269.
doi: 10.13866/j.azr.2022.01.25
[17] 常溢华, 蔡海生. 基于SRP模型的多尺度生态脆弱性动态评价——以江西省鄱阳县为例[J]. 江西农业大学学报, 2022, 44(1):245-260.
[17] Chang Y H, Cai H S. Dynamic assessment of multi-scale Eco-environmental vulnerability based on SRP model in Poyang County[J]. Acta Agriculturae Universitatis Jiangxiensis, 2022, 44(1):245-260.
[18] Vicente-Serrano S M, Beguería S, López-Moreno J I. A multiscalar drought index sensitive to global warming:The standardized precipi-tation evapotranspiration index[J]. Journal of Climate, 2010, 23(7):1696-1718.
[19] Dai A G. Characteristics and trends in various forms of the Palmer drought severity index during 1900—2008[J]. Journal of Geophysical Research, 2011, 116(D12):D12115.
[20] Mckee T B, Doesken N J, Kleist J, et al. The relationship of drought frequency and duration to time scales[J]. Proceedings of the 8th Conference on Applied Climatology, 1993,17:179-184.
[21] Chen Q, Timmermans J, Wen W, et al. Ecosystems threatened by intensified drought with divergent vulnerability[J]. Remote Sen-sing of Environment, 2023,289:113512.
[22] 於琍. 干旱对生态系统脆弱性的影响研究——以长江中下游地区为例[J]. 长江流域资源与环境, 2014, 23(7):1063-1070.
[22] Yu L. Assessment on ecosystem vulnerability to drought:The case study of the middle and lower reaches of the Yangtze River[J]. Resources and Environment in the Yangtze Basin, 2014, 23(7):1063-1070.
[23] Zhang X, Liu K, Wang S, et al. Spatiotemporal evolution of ecological vulnerability in the Yellow River Basin under ecological restoration initiatives[J]. Ecological Indicators, 2022,135:108586.
[24] Xu H, Zhang Z, Oren R, et al. Hyposensitive canopy conductance renders ecosystems vulnerable to meteorological droughts[J]. Global Change Biology, 2023, 29(7):1890-1904.
[25] 闫文波, 何云玲, 余岚, 等. 气候干旱化背景下云南地区生态系统脆弱性的变化特征[J]. 生态科学, 2023, 42(1):197-205.
[25] Yan W B, He Y L, Yu L, et al. Variation of ecosystem vulnerability under the background of climate aridity change in Yunnan Variation[J]. Ecological Science, 2023, 42(1):197-205.
[26] 张宁宁, 房世峰, 杜加强, 等. 基于LUCC的新疆沙尘源空间格局及转化机理分析[J]. 干旱区地理, 2018, 41(5):1053-1063.
[26] Zhang N N, Fang S F, Du J Q, et al. Transformation and spatio-temporal distribution of sand-dust sources in Xinjiang based on LUCC[J]. Arid Land Geography, 2018, 41(5):1053-1063.
[27] Yao J, Chen Y, Guan X, et al. Recent climate and hydrological changes in a mountain-basin system in Xinjiang,China[J]. Earth-Science Reviews, 2022,226:103957.
[28] 刘大钊, 周立志. 安徽安庆菜子湖国家湿地公园景观格局变化对鸟类多样性的影响[J]. 生态学杂志, 2021, 40(7):2201-2212.
[28] Liu D Z, Zhou L Z. Effects of landscape pattern change on bird diversity in Anhui Anqing Caizi Lake National Wetland Park[J]. Chinese Journal of Ecology, 2021, 40(7):2201-2212.
doi: DOI: 10.13292/j.1000-4890.202107.004
[29] 李晓燕, 张树文. 基于景观结构的吉林西部生态安全动态分析[J]. 干旱区研究, 2005, 22(1):57-62.
[29] Li X Y, Zhang S W. Analysis on the dynamic trend of ecological security in the west part of Jilin Province,China based on the landscape structure[J]. Arid Zone Research, 2005, 22(1):57-62.
[30] 梁二敏, 张军民, 杨卫红. 新疆玛纳斯河流域绿洲景观生态脆弱性时空分异[J]. 干旱区研究, 2017, 34(4):950-957.
[30] Liang E M, Zhang J M, Yang W H. Spatiotemporal variation of landscape ecological vulnerability in oasis in the Manas River Basin,Xinjiang[J]. Arid Zone Research, 2017, 34(4):950-957.
[31] Mottl O, Flantua S G A, Bhatta K P, et al. Global acceleration in rates of vegetation change over the past 18,000 years[J]. Science, 2021, 372(6544):860-864.
doi: 10.1126/science.abg1685 pmid: 34016781
[32] Mu H, Li X, Wen Y, et al. A global record of annual terrestrial human footprint dataset from 2000 to 2018[J]. Scientific Data, 2022, 9(1):176.
doi: 10.1038/s41597-022-01284-8 pmid: 35440581
[33] 赵楠, 赵颖慧, 邹海凤, 等. 1990—2020年黑龙江省植被覆盖度的时空变化趋势及驱动力[J]. 应用生态学报, 2023, 34(5):1320-1330.
doi: 10.13287/j.1001-9332.202305.021
[33] Zhao N, Zhao Y H, Zou H F, et al. Spatial and temporal trends and drivers of fractional vegetation cover in Heilongjiang Province,China during 1990—2020[J]. Chinese Journal of Applied Ecology, 2023, 34(5):1320-1330.
[34] 张霞, 周忠发, 朱昌丽, 等. 喀斯特山区生态脆弱性与经济贫困的耦合关系——以贵州省荔波县为例[J]. 水土保持通报, 2020, 40(5):227-233.
[34] Zhang X, Zhou Z F, Zhu C L, et al. Coupling relation between ecological vulnerability and economic poverty in Karst Mountain Area:A case study at Libo County of Guizhou Province[J]. Bulletin of Soil and Water Conservation, 2020, 40(5):227-233.
[35] 张慧琳, 吴攀升, 侯艳军. 五台山地区生态脆弱性评价及其时空变化[J]. 生态与农村环境学报, 2020, 36(8):1026-1035.
[35] Zhang H L, Wu P S, Hou Y J. Ecological vulnerability assessment and its temporal and spatial changes in Wutai Mountain Area[J]. Journal of Ecology and Rural Environment, 2020, 36(8):1026-1035.
[36] 卓静, 胡皓, 何慧娟, 等. 陕北黄土高原生态脆弱性时空变异及驱动因素分析[J]. 干旱区地理, 2023, 46(11):1768-1777.
doi: 10.12118/j.issn.1000-6060.2023.027
[36] Zhuo J, Hu H, He H J, et al. Spatiotemporal variation and driving factors of ecological vulnerability in the Loess Plateau of northern Shaanxi[J]. Arid Land Geography, 2023, 46(11):1768-1777.
doi: 10.12118/j.issn.1000-6060.2023.027
[37] 齐润泽, 潘竟虎. 河湟地区生态脆弱性时空演变及影响因素研究[J]. 干旱区研究, 2023, 40(6):1002-1013.
doi: 10.13866/j.azr.2023.06.15
[37] Qi R Z, Pan J H. Spatial and temporal evolution of ecological vulnerability and its influencing factors in the Hehuang Area[J]. Arid Zone Research, 2023, 40(6):1002-1013.
doi: 10.13866/j.azr.2023.06.15
[38] 邓伟, 袁兴中, 孙荣, 等. 基于遥感的北方农牧交错带生态脆弱性评价[J]. 环境科学与技术, 2016, 39(11):174-181.
[38] Deng W, Yuan X Z, Sun R, et al. Eco-vulnerability assessment based on remote sensing in the Argo-pastoral ecotone of North China[J]. Environmental Science & Technology, 2016, 39(11):174-181.
[39] Fatemi F, Ardalan A, Aguirre B, et al. Social vulnerability indicators in disasters:Findings from a systematic review[J]. International Journal of Disaster Risk Reduction, 2017,22:219-227.
[40] 李怀海, 李纯斌, 吴静, 等. 2000—2020年石羊河流域草地净初级生产力时空动态及其对气候的响应[J]. 草业科学, 2022, 39(10):2048-2061.
[40] Li H H, Li C B, Wu J, et al. Spatio-temporal dynamics and climate response of grassland net primary productivity in Shiyang River Basin from 2000 to 2020[J]. Pratacultural Science, 2022, 39(10):2048-2061.
[41] 刘亮, 关靖云, 穆晨, 等. 2008—2018年伊犁河流域植被净初级生产力时空分异特征[J]. 生态学报, 2022, 42(12):4861-4871.
[41] Liu L, Guan J Y, Mu C, et al. Spatio-temporal characteristics of vegetation net primary productivity in the Ili River Basin from 2008 to 2018[J]. Acta Ecologica Sinica, 2022, 42(12):4861-4871.
[42] Yin L, Wang X, Feng X, et al. A comparison of SSEBop-model-based evapotranspiration with eight evapotranspiration products in the Yellow River Basin,China[J]. Remote Sensing, 2020, 12(16):2528.
[43] Song H, Zhang X, Zou J, et al. A study on the value of carbon compensation in the Huai River Basin based on land use from 2000 to 2020[J]. Physics and Chemistry of the Earth,Parts A/B/C, 2023,132:103490.
[44] 隋露, 闫志明, 李开放, 等. 人类活动及气候变化影响下伊犁河谷生境质量预测研究[J]. 干旱区地理, 2024, 47(1):104-116.
doi: 10.12118/j.issn.1000-6060.2023.275
[44] Sui L, Yan Z M, Li K F, et al. Prediction of habitat quality in the Ili River Valley under the influence of human activities and climate change[J]. Arid Land Geography, 2024, 47(1):104-116.
doi: 10.12118/j.issn.1000-6060.2023.275
[45] 姚雄, 余坤勇, 刘健, 等. 南方水土流失严重区的生态脆弱性时空演变[J]. 应用生态学报, 2016, 27(3):735-745.
[45] Yao X, Yu K Y, Liu J, et al. Spatial and temporal changes of the ecological vulnerability in a serious soil erosion area,Southern China[J]. Chinese Journal of Applied Ecology, 2016, 27(3):735-745.
[46] Cai X, Li Z, Liang Y. Tempo-spatial changes of ecological vulnerability in the arid area based on ordered weighted average model[J]. Ecological Indicators, 2021,133:108398.
[47] 岳笑, 张良侠, 周德成, 等. 干旱—半干旱典型生态脆弱区生态脆弱性时空演变及驱动因子分析[J]. 环境生态学, 2023, 5(6):1-9,14.
[47] Yue X, Zhang L X, Zhou D C, et al. Spatial-temporal variations and driving forces of the ecological vulnerability in the typical arid/semi-arid ecologically vulnerable areas[J]. Environmental Ecology, 2023, 5(6):1-9,14.
[48] 李致家, 霍文博, 张珂. 格林-安普特降雨径流模型改进及初步应用[J]. 河海大学学报(自然科学版), 2020, 48(5):385-391.
[48] Li Z J, Huo W B, Zhang K. Improvement and preliminary application of Green-Ampter rainfall runoff model[J]. Journal of Hohai University (Natural Science), 2020, 48(5):385-391.
[1] WANG Yuanyuan, ZANG Xiechao, XU Weiwei, YANG Changxia, JIN Yang, REN Jinghua, HE Xinxing. SRP model-based assessment and analysis of ecological vulnerability in the Yangtze River economic belt within Jiangsu Province[J]. Remote Sensing for Natural Resources, 2025, 37(3): 170-182.
[2] SU Yue, LIU Hong, YANG Wunian, OUYANG Yuan, ZHANG Jinghua, ZHANG Tengjiao, HUANG Yong. Ecological vulnerability of highland mountain areas:A case study of Kangding City, Sichuan Province[J]. Remote Sensing for Natural Resources, 2024, 36(3): 206-215.
[3] WANG Hao, LIU Cai, CHEN Li, YANG Jinzhong, WEN Jing, SUN Yaqin, AN Na, ZHOU Yingjie, SHAO Zhitao. Correlation analysis between nonmetallic mines for building materials and social economy in the Tibet Autonomous Region[J]. Remote Sensing for Natural Resources, 2024, 36(3): 233-239.
[4] LI Weiyang, SHI Haijing, NIE Weiting, YANG Xinyuan. Analyzing the spatio-temporal evolution of surface temperatures in the Yanhe River basin based on the changes in surface parameters[J]. Remote Sensing for Natural Resources, 2024, 36(2): 229-238.
[5] GUO Yi, GAN Fuping, YAN Bokun, BAI Juan, XING Naichen, LIU Qi. Spatio-temporal distribution and influencing factors of soil moisture content in Henan Province during 1948—2021[J]. Remote Sensing for Natural Resources, 2023, 35(3): 241-252.
[6] PANG Xin, LIU Jun. Effects of climate changes on the NDVI of vegetation in Asia[J]. Remote Sensing for Natural Resources, 2023, 35(2): 295-305.
[7] YU Wei, KE Fuyang, CAO Yunchang. Spatial-temporal analysis of drought characteristics of Yunnan Province based on MODIS_TVDI/GNSS_PWV data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 202-210.
[8] YANG Wenna, ZHOU Liang, SUN Dongqi. Ecological vulnerability assessment of the Yellow River basin based on partition-integration concept[J]. Remote Sensing for Natural Resources, 2021, 33(3): 211-218.
[9] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[10] Wen ZHANG, Yan REN, Xiaolin MA, Yijie HU. Estimation of soil moisture with drought indices in Huaihe River Basin of East China[J]. Remote Sensing for Land & Resources, 2018, 30(2): 73-79.
[11] ZHANG Qianning, TAN Shiteng, XU Zhu, HUANG Zechun. Applicability and simplification study of patch level landscape metrics based on GLC30[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 98-105.
[12] LI Li. Remote sensing bathymetric inversion for the Xisha Islands based on WorldView-2 data: A case study of Zhaoshu Island and South Island[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 170-175.
[13] YANG Yanan, WANG Jinliang, CHEN Guangjie, XI Xiaohuan, WANG Cheng. Relationship between land use pattern and water quality change in Fuxian Lake basin[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 159-165.
[14] YANG Keming, ZHOU Yujie, QI Jianwei, WANG Linwei, LIU Shiwen. Remote sensing estimating of urban impervious surface area and land surface temperature[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 134-139.
[15] FU Yin-Zhen, WANG Xiao-Qin, JIANG Hong. The Correlation between LAI and Vegetation Index of Masson Pine[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(3): 41-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech