Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    1996, Vol. 8 Issue (1) : 36-41     DOI: 10.6046/gtzyyg.1996.01.07
Method Research |
PURIFICATION OF TRAINING SAMPLES IN SUPERVISED CLASSIFICATION OF REMOTE SENSING DATA
Wu Jianping1, Yang Xingwei2
1. Geography Department, East China Normal Uni., Shanghai, 200062;
2. Shanghai Meteorological Institute, Shanghai, 200030
Download: PDF(285 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

This paper analyses the effect of training samples on supervised classification of remote sensing data, proposes a theory and method for purincation of training samples, which uses spectral and spatial information to remove the undesirable sample pixels. An example shows that divergence between classes, goodness of fit to Gaussian distributinn and classification accuracy can be improved after purification of training samples.

Keywords EOS-Terra/ MODIS      Sandstorm      Remote sensing monitoring     
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Qing
WANG Qiao
WANG Wen-Jie
HE Li-Min
WANG Chang-Zuo
FANG Ying-Yao
WANG Wei-Ping
XIAO Gang-Yi
Wu Cheng-Ping
Cite this article:   
LI Qing,WANG Qiao,WANG Wen-Jie, et al. PURIFICATION OF TRAINING SAMPLES IN SUPERVISED CLASSIFICATION OF REMOTE SENSING DATA[J]. REMOTE SENSING FOR LAND & RESOURCES, 1996, 8(1): 36-41.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.1996.01.07     OR     https://www.gtzyyg.com/EN/Y1996/V8/I1/36


[1] Arai Ketc. . Asupervised Thematic Mapper classification with a purification of trainingsamples. Int. J. Remote Sensing, 1992, 13(11): 2039-2049.


[2] 李德熊·遥感技术.北京:北京工业学院出版社, 1987. 264,


[3] 浙江大学数学系离等数学教研组.概率论与数学统计.北京:人民教育出版社, 1979. 275,


[4] Congaltion R. G. etc. . Assessing Lands at classification accuracyusing discrete multivariate analysisstatis ticaltechniques. PE&RS. 1983, 49(12):1671-1678.

[1] CHEN Dong, YAO Weiling. Automatic numbering and method improvement of mine patches based on ArcPy and custom ArcToolbox[J]. Remote Sensing for Land & Resources, 2021, 33(2): 262-269.
[2] WANG Jie, LIU Xiaoyang, YANG Jinzhong, ZHOU Yingjie, An Na, WANG Zhihui. Typical model analysis of mine geological environment restoration and management in Zhejiang Province based on domestic high-resolution satellite data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 216-221.
[3] DIAO Mingguang, LIU Wenjing, LI Jing, LIU Fang, WANG Yanzuo. Dynamic change detection method of vector result data in mine remote sensing monitoring[J]. Remote Sensing for Land & Resources, 2020, 32(3): 240-246.
[4] Haigang SHI, Chunli LIANG, Jianyong ZHANG, Chunlei ZHANG, Xu CHENG. Remote sensing survey of the influence of coastline changes on the thermal discharge in the vicinity of Tianwan Nuclear Power Station[J]. Remote Sensing for Land & Resources, 2020, 32(2): 196-203.
[5] Xi LIU, Lina HAO, Xianhua YANG, Jie HUANG, Zhi ZHANG, Wunian YANG. Research and implementation of rapid statistical methods for mine remote sensing monitoring indicators[J]. Remote Sensing for Land & Resources, 2020, 32(2): 259-265.
[6] Jie WANG, Yaqiu YIN, Hang YU, Cunhao JIANG, Yu WAN. Remote sensing monitoring of mine geological environment in Zhejiang Province based on RS and GIS[J]. Remote Sensing for Land & Resources, 2020, 32(1): 232-236.
[7] Yuling ZHAO, Jinzhong YANG, Yaqiu YIN, Hang ZHAO, Jinbao HE, Han ZHANG. Research on remote sensing monitoring of zirconium-titanium sand mine exploitation and strategies of ecological restoration on the eastern beach of Hainan Island[J]. Remote Sensing for Land & Resources, 2019, 31(4): 143-150.
[8] Haiping WU, Shicun HUANG. Research on new construction land information extraction based on deep learning: Innovation exploration of the national project of land use monitoring via remote sensing[J]. Remote Sensing for Land & Resources, 2019, 31(4): 159-166.
[9] Zhen CHEN, Yunshi ZHANG, Yuanyu ZHANG, Lingling SANG. A study of remote sensing monitoring methods for the high standard farmland[J]. Remote Sensing for Land & Resources, 2019, 31(2): 125-130.
[10] Xianhua YANG, Jie HUANG, Li TIAN, Bei PENG, Lixiao XIAO, Xinlong SONG. Application of mine remote sensing monitoring to analysis of mine goaf stability[J]. Remote Sensing for Land & Resources, 2018, 30(3): 143-150.
[11] Chungui ZHANG, Bingqing LIN. Application of FY-2E data to remote sensing monitoring of sea fog in Fujian coastal region[J]. Remote Sensing for Land & Resources, 2018, 30(1): 7-7.
[12] XUE Qing, WU Wei, LI Mingsong, DONG Shuangfa, ZHANG Xinyi, SHI Haigang. Application of GF-1 satellite data to remote sensing monitoring of the mine[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 67-72.
[13] WANG Yijun, ZHAO Jun, WEI Wei, HAN Liqin. Remote sensing investigation and analysis of wetland in Gansu section of Heihe River Basin in the past 14 years[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 111-117.
[14] SONG Yang, FANG Shibo, LIANG Hanyue, KE Lina. Comparison and application of agricultural drought indexes based on MODIS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 215-220.
[15] DIAO Mingguang, XUE Tao, LIANG Jiandong, LI Jiancun, LIU Qiong. Description method for complex constraint of mine remote sensing monitoring attribute data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 197-201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech