Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    1998, Vol. 10 Issue (3) : 67-72     DOI: 10.6046/gtzyyg.1998.03.16
Geological Construct |
GEOLOGICAL EFFECT · WATER DYNAMIC CONDITION IN SECTION OF SUSPENSION RIVER · REMOTE SENSING
Zhang Tianyi, Zhu Jia, Sheng Jihu
Center for Remote Sensing of Henan Province, Zhengzhou 450007
Download: PDF(393 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The paper introduces the foundational structure sketch of Yellow River alluvial fan area and analyses the form of neotectonic movement of each section of the river and development feature of each river course. At the same time, it analyses the effect of the Yellow River course section character on the control and guide engineeing . Finally, the paper analyses the situation of proventing flood in the lower reaches of the river under the medium and special big flood condition.

Keywords Optical remote sensing      Atmospheric correction      Effective factors     
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QI Xue-Yong
TIAN Qing-Jiu
ZHANG Yuan-Pei
NIU Jun-Qiang
WANG Wei
Cite this article:   
QI Xue-Yong,TIAN Qing-Jiu,ZHANG Yuan-Pei, et al. GEOLOGICAL EFFECT · WATER DYNAMIC CONDITION IN SECTION OF SUSPENSION RIVER · REMOTE SENSING[J]. REMOTE SENSING FOR LAND & RESOURCES, 1998, 10(3): 67-72.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.1998.03.16     OR     https://www.gtzyyg.com/EN/Y1998/V10/I3/67
[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[3] HE Haiying, CHEN Caifen, CHEN Fulong, TANG Panpan. Deformation monitoring along the landscape corridor of Zhangjiakou Ming Great Wall using Sentinel-1 SBAS-InSAR approach[J]. Remote Sensing for Land & Resources, 2021, 33(1): 205-213.
[4] Zhenyu SHEN, Xiaohong GAO, Min TANG. Comparison and accuracy verification for atmospheric correction of SPOT6 image in high altitude complex terrain area[J]. Remote Sensing for Land & Resources, 2020, 32(1): 81-89.
[5] Dongya CHENG, Xudong LI. Comparison of change characteristics of NDVI in mountain basin before and after atmospheric correction[J]. Remote Sensing for Land & Resources, 2020, 32(1): 90-97.
[6] Ling CHEN, Li CHEN, Wei LI, Jianyu LIU. Atmospheric correction of Worldview3 image based on FLAASH model[J]. Remote Sensing for Land & Resources, 2019, 31(4): 26-31.
[7] Piyuan YI, Hanbo LI, Peng TONG, Yingjun ZHAO, Chuan ZHANG, Feng TIAN, Yongfei CHE, Wenhuan WU. Atmospheric radiation correction of airborne hyperspectral image by adding elevation factor[J]. Remote Sensing for Land & Resources, 2019, 31(2): 66-72.
[8] Bin YANG, Dan LI, Guisheng GAO, Cai CHEN, Lei WANG. Processing analysis of Sentinel-2A data and application to arid valleys extraction[J]. Remote Sensing for Land & Resources, 2018, 30(3): 128-135.
[9] KONG Jinling, YANG Jing, SUN Xiaoming, YANG Shu, LIU Futian, DU Dong. Atmospheric correction and suspended sediment concentration retrieval based on multi-spectral remote sensing images: A case study of Caofeidian offshore area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 130-137.
[10] ZHANG Yue, XIAO Yu, CHANG Jingjing, LIU Jian, WANG Yaqiong, HE Chunyan, HE Bing. Effects of atmospheric correction on extracting cyanobacteria bloom information based on remote sensing indices[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 7-12.
[11] DIAN Yuanyong, FANG Shenghui, XU Yongrong. An atmospheric correction algorithm for hyperspectral imagery with collaborative retrieval of aerosol optical thickness and water vapor content[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 22-28.
[12] LIU Yan, WANG Hong, ZHANG Pu, LI Yang. Accuracy Evaluation of MODIS Atmospheric Correction and Its Effects on Surface-Snow Density Extraction[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(1): 128-132.
[13] SUN Yuan, GU Xing-Fa, YU Tao, GAO Hai-Liang. A Study of HJ-1A CCD Image Atmospheric Correction[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(4): 6-9.
[14] DU Xin, CHEN Xue-Yang, MENG Ji-Hua, ZHANG Fei-Fei, ZHANG Miao, WU Bing-Fang. Atmospheric Correction of HJ-1 CCD Data Based on 6S Model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(2): 22-25.
[15] ZHANG Chuan, LIU Shao-Feng, LIU Yan-Hong, PEI Xiao-Yin. The Application and Evaluation of Spectral Reconstruction of Hyperion Based on Radiative Transfer Model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(2): 30-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech