Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (2) : 87-92     DOI: 10.6046/gtzyyg.2018.02.12
|
Object-oriented classification method for oblique photogrammetric point clouds
Xue HE(), Zhengrong ZOU, Yunsheng ZHANG, Shouji DU, Te ZHENG
School of Geosciences and Info-Physics,Central South University, Changsha 410083, China
Download: PDF(3177 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

With the development of image dense matching method, point clouds can be obtained from multi-view oblique aerial images, whose accuracy and density can be comparable with LiDAR point clouds. However, the currently derived colored point clouds lack classification information. In view of such a situation, this paper proposes an object-based classification method for oblique photogrammetric point clouds. The first step of this method is to calculate features of each point. Then, SLIC algorithm is used to divide the corresponding image into super-pixels. After that, point clouds are clustered into super-voxels as objects according to the relationship between point clouds and images, and features of each object are calculated afterwards. Random forests algorithm is used to classify these super-voxels. Finally, contextual information is adopted to optimize the initial classification results. Two sets of data were employed for evaluating the proposed method, and the overall accuracy could reach up to 91.2% and 88.1% respectively, which improves the precision by 2.3% and 8.2% compared with the point-based classification.

Keywords point clouds classification      features of point clouds      oblique image      object-oriented      random forests     
:  P231  
Issue Date: 30 May 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xue HE
Zhengrong ZOU
Yunsheng ZHANG
Shouji DU
Te ZHENG
Cite this article:   
Xue HE,Zhengrong ZOU,Yunsheng ZHANG, et al. Object-oriented classification method for oblique photogrammetric point clouds[J]. Remote Sensing for Land & Resources, 2018, 30(2): 87-92.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.02.12     OR     https://www.gtzyyg.com/EN/Y2018/V30/I2/87
Fig.1  Overview flowchart of the method in this paper
Fig.2  Data sources
数据编号 m 点云总体
对象数量
训练数据集 测试数据集
屋顶 地面 植被 立面 屋顶 地面 植被 立面
第1组 80 000 39 097 111 107 53 111 440 426 210 441
100 000 48 002 136 129 62 133 543 515 247 531
150 000 69 504 195 183 86 184 776 728 340 736
第2组 80 000 41 586 62 52 55 48 245 205 218 192
100 000 51 606 73 63 65 57 292 250 256 227
150 000 76 218 104 88 95 80 415 352 378 316
  
评价指标 第1组 第2组
m=80 000 m=100 000 m=150 000 m=80 000 m=100 000 m=150 000
Kappa系数 0.963 2 0.986 6 0.977 2 0.978 2 0.979 1 0.969 8
分类精度/% 97.30 99.02 98.33 98.37 98.44 97.74
Tab.2  Learning results of classifier
Fig.3  Importance of datasets features
Fig.4  Visualization for classification results
分类方法 第1组 第2组
基于单点的分类方法 88.9 79.9
面向对象的分类方法 90.0 84.9
面向对象的分类方法优化后 91.2 88.1
Tab.3  Overall accuracy(%)
Fig.5  Examples of error classification
[1] Hirschmüller H.Accurate and efficient stereo processing by semi-global matching and mutual information[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego,USA:IEEE, 2005: 807-814.
[2] Hirschmüller H . Stereo processing by semiglobal matching and mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008,30(2):328-341.
doi: 10.1109/TPAMI.2007.1166 url: http://ieeexplore.ieee.org/document/4359315/
[3] Wehr A, Lohr U . Airborne laser scanning:An introduction and overview[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999,54(2/3):68-82.
doi: 10.1016/S0924-2716(99)00011-8 url: http://linkinghub.elsevier.com/retrieve/pii/S0924271699000118
[4] Xu S, Vosselman G, Elberink S O . Multiple-entity based classification of airborne laser scanning data in urban areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,88:1-15.
doi: 10.1016/j.isprsjprs.2013.11.008 url: http://linkinghub.elsevier.com/retrieve/pii/S0924271613002700
[5] Gerke M, Xiao J . Fusion of airborne laser scanning point clouds and images for supervised and unsupervised scene classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,87:78-92.
doi: 10.1016/j.isprsjprs.2013.10.011 url: http://linkinghub.elsevier.com/retrieve/pii/S0924271613002335
[6] Guan H Y, Li J, Chapman M , et al. Integration of orthoimagery and Lidar data for object-based urban thematic mapping using random forests[J]. International Journal of Remote Sensing, 2013,34(14):5166-5186.
doi: 10.1080/01431161.2013.788261 url: http://www.tandfonline.com/doi/abs/10.1080/01431161.2013.788261
[7] 徐宏根, 王建超, 郑雄伟 , 等. 面向对象的植被与建筑物重叠区域的点云分类方法[J]. 国土资源遥感, 2012,24(2):23-27.doi: 10.6046/gtzyyg.2012.02.05.
doi: 10.6046/gtzyyg.2012.02.05 url: http://d.wanfangdata.com.cn/Periodical/gtzyyg201202005
[7] Xu H G, Wang J C, Zheng X W , et al. Object-based point clouds classification of the vegetation and building overlapped area[J]. Remote Sensing for Land and Resources, 2012,24(2):23-27.doi: 10.6046/gtzyyg.2012.02.05.
[8] Rothermel M, Haala N. Potential of dense matching for the generation of high quality digital elevation models [C]//International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences.Hannover,Germany:ISPRS, 2011: 331-343.
[9] Debella-Gilo M, Bjørkelo K, Breidenbach J , et al.Object-based analysis of aerial photogrammetric point cloud and spectral data for land cover mapping[C]//Proceedings of 2013 International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,Volume XL-1/W1.Hannover,Germany:ISPRS, 2013: 63-67.
[10] Xiao J, Gerke M, Vosselman G . Building extraction from oblique airborne imagery based on robust façade detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012,68:56-68.
doi: 10.1016/j.isprsjprs.2011.12.006 url: http://linkinghub.elsevier.com/retrieve/pii/S0924271611001602
[11] Rau J Y, Jhan J P, Hsu Y C . Analysis of oblique aerial images for land cover and point cloud classification in an urban environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(3):1304-1319.
doi: 10.1109/TGRS.2014.2337658 url: http://ieeexplore.ieee.org/document/6870455/
[12] Gerke M, Xiao J .Supervised and unsupervised MRF based 3D scene classification in multiple view airborne oblique images[C]//Proceedings of 2013 ISPRS Annals of the Photogrammetry,Remote Sensing and Spatial Information Sciences.Antalya,Turkey:ISPRS, 2013: 25-30.
[13] 孙杰, 赖祖龙 . 利用随机森林的城区机载LiDAR数据特征选择与分类[J]. 武汉大学学报(信息科学版), 2014,39(11):1310-1313.
[13] Sun J, Lai Z L . Airborne LiDAR feature selection for urban classification using random forests[J]. Geomatics and Information Science of Wuhan University, 2014,39(11):1310-1313.
[14] Hu H, Ding Y L, Zhu Q , et al. An adaptive surface filter for airborne laser scanning point clouds by means of regularization and bending energy[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,92:98-111.
doi: 10.1016/j.isprsjprs.2014.02.014 url: http://linkinghub.elsevier.com/retrieve/pii/S0924271614000525
[15] Rothermel M, Wenzel K, Fritsch D , et al.SURE:Photogrammetric surface reconstruction from imagery[C]//Proceedings of 2012 LC3D Workshop.Berlin,Germany:[s.n], 2012: 1-9.
[16] Achanta R, Shaji A, Smith K , et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(11):2274-2282.
doi: 10.1109/TPAMI.2012.120 pmid: 22641706 url: http://ieeexplore.ieee.org/document/6205760/
[17] Breiman L . Random forests[J]. Machine Learning, 2001,45(1):5-32.
doi: 10.1023/A:1010933404324 url: http://link.springer.com/10.1023/A:1010933404324
[18] Guo L, Chehata N, Mallet C , et al. Relevance of airborne Lidar and multispectral image data for urban scene classification using random forests[J]. ISPRS Journal of Photogrammetry and remote Sensing, 2011,66(1):56-66.
doi: 10.1016/j.isprsjprs.2010.08.007 url: http://linkinghub.elsevier.com/retrieve/pii/S0924271610000705
[1] FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 153-161.
[2] CAI Xiang, LI Qi, LUO Yan, QI Jiandong. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land & Resources, 2021, 33(1): 63-71.
[3] Jisheng XIA, Mengying MA, Zhongren FU. Extraction of mechanical damage surface using GF-2 remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 26-32.
[4] Linyan FENG, Bingxiang TAN, Xiaohui WANG, Xinyun CHEN, Weisheng ZENG, Zhao QI. Object-oriented rapid forest change detection based on distribution function[J]. Remote Sensing for Land & Resources, 2020, 32(2): 73-80.
[5] Liping YANG, Meng MA, Wei XIE, Xueping PAN. Fusion algorithm evaluation of Landsat 8 panchromatic and multispetral images in arid regions[J]. Remote Sensing for Land & Resources, 2019, 31(4): 11-19.
[6] Yi ZHENG, Yiqiong LIN, Jian ZHOU, Weixiu GAN, Guangxuan LIN, Fanghong XU, Guanghui LIN. Mangrove inter-species classification based on ZY-3 image in Leizhou Peninsula, Guangdong Province[J]. Remote Sensing for Land & Resources, 2019, 31(3): 201-208.
[7] Hui HUANG, Xiongwei ZHENG, Genyun SUN, Yanling HAO, Aizhu ZHANG, Jun RONG, Hongzhang MA. Seismic image classification based on gravitational self-organizing map[J]. Remote Sensing for Land & Resources, 2019, 31(3): 95-103.
[8] Linlin LIANG, Liming JIANG, Zhiwei ZHOU, Yuxing CHEN, Yafei SUN. Object-oriented classification of unmanned aerial vehicle image for thermal erosion gully boundary extraction[J]. Remote Sensing for Land & Resources, 2019, 31(2): 180-186.
[9] Feng FU, Xinjie WANG, Jin WANG, Na WANG, Jihong TONG. Tree species and age groups classification based on GF-2 image[J]. Remote Sensing for Land & Resources, 2019, 31(2): 118-124.
[10] Zhen CHEN, Yunshi ZHANG, Yuanyu ZHANG, Lingling SANG. A study of remote sensing monitoring methods for the high standard farmland[J]. Remote Sensing for Land & Resources, 2019, 31(2): 125-130.
[11] Chao MA, Fei YANG, Xuecheng WANG. Extracting tea plantations in southern hilly and mountainous region based on mesoscale spectrum and temporal phenological features[J]. Remote Sensing for Land & Resources, 2019, 31(1): 141-148.
[12] Yueru WANG, Pengpeng HAN, Shujing GUAN, Yu HAN, Lin YI, Tinggang ZHOU, Jinsong CHEN. Information extraction of Dracaena sanderiana planting area based on Landsat8 OLI data[J]. Remote Sensing for Land & Resources, 2019, 31(1): 133-140.
[13] Wei LI, Weinan LIU, Yueping JIA, Hongyang LIU, Yong TANG. Information extraction of the Ebinur Lake artemia based on object - oriented method[J]. Remote Sensing for Land & Resources, 2018, 30(4): 176-181.
[14] Yongtao JIN, Xiufeng YANG, Tao GAO, Huimin GUO, Shimeng LIU. The typical object extraction method based on object-oriented and deep learning[J]. Remote Sensing for Land & Resources, 2018, 30(1): 22-29.
[15] LI Chungan, Liang Wenhai. Forest change detection using remote sensing image based on object-oriented change vector analysis[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 77-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech