Please wait a minute...
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (2) : 73-80     DOI: 10.6046/gtzyyg.2020.02.10
Object-oriented rapid forest change detection based on distribution function
Linyan FENG1,2, Bingxiang TAN1,2(), Xiaohui WANG1,2, Xinyun CHEN3, Weisheng ZENG3, Zhao QI1,2
1. Research Institute of Forest Resources Information Techniques, Chinese Academy of Forestry, Beijing 100091, China
2. Key Laboratory of Forestry Remote Sensing and Information System, NFGA, Beijing 100091, China
3. Academy of Forest and Grassland Inventory and Planning, Beijing 100714, China
Download: PDF(4518 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Plantation in southern China is growing rapidly, and rotation cutting period is short. To explore the forest change detection method used to update the forest resource database effectively and to monitor the dynamic changes in forest harvesting and renewal in a short period, the authors chose the plantation area of Shangsi County in Guangxi as the study area, where the plantation area changes frequently and rapidly and the change patterns are numerous and small. The GF-2 remote sensing images of two phases were used as data sources. Multi-scale segmentation and spectral difference segmentation were used to segment the two-phase images. The change areas and change types were extracted from the NDVI difference of the objects and the threshold value was determined based on the distribution function, so as to realize the rapid detection of forest change. In addition, the same method was adopted for pixel-based processing in comparison with object-oriented NDVI difference method. The results show that the overall accuracy of the object-oriented NDVI difference method is 87.12%, and the Kappa coefficient is 0.81. The accuracy and extraction effect are better than those of the pixel-based NDVI difference method, indicating that the object-oriented NDVI difference method can better depict the shape and boundary of the change spots and can also more accurately detect the small change area. This method can be adapted to detect the changing characteristics of plantation in south China and can also be used to update the forest resource database for the purpose of rapid change detection.

Keywords GF-2      change detection      NDVI      object-oriented      distribution function     
:  TP79  
Corresponding Authors: Bingxiang TAN     E-mail:
Issue Date: 18 June 2020
E-mail this article
E-mail Alert
Articles by authors
Linyan FENG
Bingxiang TAN
Xiaohui WANG
Xinyun CHEN
Weisheng ZENG
Zhao QI
Cite this article:   
Linyan FENG,Bingxiang TAN,Xiaohui WANG, et al. Object-oriented rapid forest change detection based on distribution function[J]. Remote Sensing for Land & Resources, 2020, 32(2): 73-80.
URL:     OR
Fig.1  Study area image and geographical location map
Fig.2  Technical roadmap
空间分辨率/m 最小可检测面积/hm2
250~1 000 6~100
10~30 0.05~0.30
0.5~5 0.01
Tab.1  Relationship between sensor spatial resolution and minimum detectable area
图层 分割方法 分割对象 分割尺度 形状参数 紧致度参数 对象数量/个
1 多尺度分割 全部像元 70 0.1 0.5 73 328
2 光谱差异分割 图层1 50 69 134
Tab.2  Parameters of image segmentation
Fig.3  Segmentation results of images in local areas
Fig.4  Image statistics of NDVI difference of two methods
变化类型 面向对象判定条件 基于像元判定条件
植被变裸地 Mi≤-0.085 Mi≤-0.098
裸地变植被 Mi≥0.18 Mi≥0.148
未变化 -0.085<△Mi<0.18 -0.098<△Mi<0.148
Tab.3  Judgment conditions for each change type
Fig.5  Change detection results of two methods
实际变化类型 合计 漏分
植被变裸地 裸地变植被 未变化
面向对象NDVI差值法 植被变裸地 19 121 755 1 465 21 341 9.80 10.40
裸地变植被 0 12 589 5 082 17 671 10.91 28.76 89.76 0.81
未变化 2 078 787 57 314 60 179 10.25 4.76
基于像元NDVI差值法 植被变裸地 17 590 596 1 363 19 549 17.02 10.02
裸地变植被 0 12 813 6 484 19 297 9.33 33.60 87.12 0.76
未变化 3 609 722 56 014 60 345 12.29 7.18
合计 21 199 14 131 63 861 99 191
Tab.4  Change detection results of the confusion matrix
Fig.6  Local change detection results
[1] 赵宪文, 李崇贵, 斯林, 等. 基于信息技术的森林资源调查新体系[J]. 北京林业大学学报, 2002,24(5/6):147-155.
[1] Zhao X W, Li C G, Si L, et al. Building a new system of forest resources inventory by information technology[J]. Journal of Beijing University, 2002,24(5/6):147-155.
[2] Ban Y, Yousif O. Change techniques:A review[M]. Multitemporal Remote Sensing.Stockholm:Springer, 2016.
[3] 陈雅如, 肖文发, 冯源, 等. 三峡库区1992—2012年森林景观格局演变研究[J]. 林业科学研究, 2017,30(4):542-550.
[3] Chen Y R, Xiao W F, Feng Y, et al. Evolution of forest landscape pattern in the There Gorges reservoir area during 1992—2012[J]. Forest Research, 2017,30(4):542-550.
[4] 沈文娟, 李明诗, 黄成全. 长时间序列多源遥感数据的森林干扰监测算法研究进展[J]. 遥感学报, 2018,22(6):1005-1022.
[4] Shen W J, Li M S, Huang C Q. Review of remote sensing algorithms for monitoring forest disturbance from time series and multi-source data fusion[J]. Journal of Remote Sensing, 2018,22(6):1005-1022.
[5] Ian H, Robert C, Mark F. An evaluation of forest health insect and disease survey data and satellite-based remote sensing forest change detection methods:Case studies in the United States[J]. Remote Sensing, 2018,10(8):1184-1192.
[6] Kim D H, Sexton J O, Noojipady P, et al. Global, Landsat-based forest-cover change from 1990 to 2000[J]. Remote Sensing of Environment, 2014,155:178-193.
doi: 10.1016/j.rse.2014.08.017 url:
[7] 刁娇娇, 龚鑫烨, 李明诗. 利用综合变化检测方法进行土地覆盖变化制图[J]. 国土资源遥感, 2018,30(1):157-165.doi: 10.6046/gtzyyg.2018.01.22.
[7] Diao J J, Gong X Y, Li M S. A comprehensive change detection method for updating land cover data base[J]. Remote Sensing for Land and Resources, 2018,30(1):157-165.doi: 10.6046/gtzyyg.2018.01.22.
[8] 陈幸良, 巨茜, 林昆仑. 中国人工林发展现状、问题与对策[J]. 世界林业研究, 2014,27(6):54-59.
[8] Chen X L, Ju Q, Lin K L. Development status, issues and countermeasures of China’s plantation[J]. World Forestry Research, 2014,27(6):54-59.
[9] 史文中, 张鹏林. 光学遥感影像变化检测研究的回顾与展望[J]. 武汉大学学报(信息科学版), 2018,43(12):1832-1837.
[9] Shi W Z, Zhang P L. State-of-the-art remotely sensed images-based change detection methods[J]. Geomatics and Information Science of Wuhan University, 2018,43(12):1832-1837.
[10] 李亮, 王蕾, 孙晓鹏, 等. 面向对象变化向量分析的遥感影像变化检测[J]. 遥感信息, 2017,32(6):71-77.
[10] Li L, Wang L, Sun X P, et al. Remote sensing change detection method based on object-oriented change vector analysis[J]. Remote Sensing Information, 2017,32(6):71-77.
[11] Cai S, Liu D. A comparison of object-based and contextual pixel-based classifications using high and medium spatial resolution images[J]. Remote Sensing Letters, 2013,4(10):998-1007.
[12] Mahmoudi F T, Samadzadegan F, Reinartz P. Context aware modification on the object based image analysis[J]. Journal of the Indian Society of Remote Sensing, 2015,43(4):709-717.
[13] 冯文卿, 眭海刚, 涂继辉, 等. 高分辨率遥感影像的随机森林变化检测方法[J]. 测绘学报, 2017,46(11):1880-1890.
[13] Feng W Q, Sui H G, Tu J H, et al. Change detection method for high resolution remote sensing images using random forest[J]. Acta Geodaetica et Cartographica sinica, 2017,46(11):1880-1890.
[14] 王光辉, 李建磊, 王华斌, 等. 基于多特征融合的遥感影像变化检测算法[J]. 国土资源遥感, 2018,30(2):93-99.doi: 10.6046/gtzyyg.2018.02.13.
[14] Wang G H, Li J L, Wang H B, et al. Change detection based on adaptive fusion of multiple features[J]. Remote Sensing for Land and Resources, 2018,30(2):93-99.doi: 10.6046/gtzyyg.2018.02.13.
[15] 于洋洋, 程飞, 廖博一, 等. 林地清理方式对桉树人工林生长的影响[J]. 福建农林大学学报(自然科学版), 2019,48(1):41-47.
[15] Yu Y Y, Cheng F, Liao B Y, et al. Effects of ground clearance on the growth of Eucalyptus plantation[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2019,48(1):41-47.
[16] 李德仁. 利用遥感影像进行变化检测[J]. 武汉大学学报(信息科学版), 2003,28(s1):7-12.
[16] Li D R. Change detection from remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2003,28(s1):7-12.
[17] 眭海刚, 冯文卿, 李文卓, 等. 多时相遥感影像变化检测方法综述[J]. 武汉大学学报(信息科学版), 2018,43(12):1885-1898.
[17] Sui H G, Feng W Q, Li W Z, et al. Review of change detection methods for multi-temporal remote sensing imagery[J]. Geomatics and Information Science of Wuhan University, 2018,43(12):1885-1898.
[18] Song D X, Huang C, Sexton J O, et al. Use of landsat and corona data for mapping forest cover change from the mid-1960s to 2000s:Case studies from the eastern United States and central Brazil[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2015,103:81-92.
[19] Wenqing F, Haigang S, Jihui T, et al. A novel change detection approach for multi-temporal high-resolution remote sensing images based on rotation forest and coarse-to-fineuncertainty analyses[J]. Remote Sensing, 2018,10(7):1015-1022.
[20] 李春干, 代华兵. 基于统计检验的面向对象高分辨率遥感图像森林变化检测[J]. 林业科学, 2017,53(5):74-81.
[20] Li C G, Dai B B. Statistical object-based method for forest change detection using high-resolution remote sensing images[J]. Scientia Silvae Sinicae, 2017,53(5):74-81.
[21] 尹凌宇, 覃先林, 孙桂芬, 等. 利用KPCA法检测高分一号影像中的森林覆盖变化[J]. 国土资源遥感, 2018,30(1):95-101.doi: 10.6046/gtzyyg.2018.01.01.
[21] Yin L Y, Qin X L, Sun G F, et al. The method for detecting forest cover change in GF-1 images by using KPCA[J]. Remote Sensing for Land and Resources, 2018,30(1):95-101.doi: 10.6046/gtzyyg.2018.01.01.
[22] 郑志峰, 曹建农, 张雯佼. PLS与EM算法支持下的遥感影像变化检测[J]. 测绘通报, 2018,498(9):33-37.
[22] Zheng Z F, Cao J N, Zhang W J. Remote sensing image change detection based on PLS and EM algorithm[J]. Bulletin of Surveying and Mapping, 2018,498(9):33-37.
[23] Paolini L, Grings F, Sobrino J A, et al. Radiometric correction effects in landsat multi-date/multi-sensor change detection studies[J]. International Journal of Remote Sensing, 2006,27(4):685-704.
[24] Sui H G, Zhou Q M, Gong J Y, et al. Processing of multi-temporal data and change detection[M] //Li Z L,Chen J,Baltsavias E.Advances in photogrammetry,remote sensing and spatial information sciences.London:Taylor and Francis Group, 2008: 227-247.
[25] Couturier S, Núňez J M, Kolb M. Measuring tropical deforestation with error margins:A method for REDD monitoring in south-eastern Mexico[M]// Sudarshana,Nageswara-Rao,Soneji.Tropical Forests.Intech Open Access Publishing, 2012.
[26] 李春干, 梁文海. 基于面向对象变化向量分析法的遥感影像森林变化检测[J]. 国土资源遥感, 2017,29(3):77-84.doi: 10.6046/gtzyyg.2017.03.11.
[26] Li C G, Liang W H. Forest change detection using remote sensing image based on object-oriented change vector analysis[J]. Remote Sensing for Land and Resources, 2017,29(3):77-84.doi: 10.6046/gtzyyg.2017.03.11.
[27] Tab F A, Naghdy G, Mertins A. Scalable multiresolution color image segmentation[J]. Signal Processing, 2006,86(7):1670-1687.
[28] 陈春雷, 武刚. 面向对象的遥感影像最优分割尺度评价[J]. 遥感技术与应用, 2011,26(1):96-102.
[28] Chen C L, Wu G. Evaluation of optimal segmentation scale with object-oriented method in remote sensing[J]. Remote Sensing Technology and Application, 2011,26(1):96-102.
[29] 陈韬亦, 陈金勇, 赵和鹏, 等. 基于Ecognition的光学遥感图像舰船目标检测[J]. 无线电工程, 2013,43(11):11-13.
[29] Chen T Y, Chen J Y, Zhao H P, et al. Ecognition-based ship detection on optical remote sensing images[J]. Radio Engineering of China, 2013,43(11):11-13.
[1] SHI Feifei, GAO Xiaohong, XIAO Jianshe, LI Hongda, LI Runxiang, ZHANG Hao. Classification of wolfberry planting areas based on ensemble learning and multi-temporal remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(1): 115-126.
[2] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[3] LIU Mingxing, LIU Jianhong, MA Minfei, JIANG Ya, ZENG Jingchao. Monitoring of Zanthoxylum bungeanum Maxim planting using GF-2 PMS images and the random forest algorithm: A case study of Linxia, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 218-229.
[4] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[5] PAN Jianping, XU Yongjie, LI Mingming, HU Yong, WANG Chunxiao. Research and development of automatic detection technologies for changes in vegetation regions based on correlation coefficients and feature analysis[J]. Remote Sensing for Natural Resources, 2022, 34(1): 67-75.
[6] FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 153-161.
[7] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[8] WANG Yiuzhu, HUANG Liang, CHEN Pengdi, LI Wenguo, YU Xiaona. Change detection of remote sensing images based on the fusion of co-saliency difference images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 89-96.
[9] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[10] HU Guoqing, CHEN Donghua, LIU Congfang, XIE Yimei, LIU Saisai, LI Hu. Dynamic monitoring of urban black-odor water bodies based on GF-2 image[J]. Remote Sensing for Land & Resources, 2021, 33(1): 30-37.
[11] CAI Xiang, LI Qi, LUO Yan, QI Jiandong. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land & Resources, 2021, 33(1): 63-71.
[12] XU Rui, YU Xiaoyu, ZHANG Chi, YANG Jin, HUANG Yu, PAN Jun. Building change detection method combining Unet and IR-MAD[J]. Remote Sensing for Land & Resources, 2020, 32(4): 90-96.
[13] DU Fangzhou, SHI Yuli, SHENG Xia. Research on downscaling of TRMM precipitation products based on deep learning: Exemplified by northeast China[J]. Remote Sensing for Land & Resources, 2020, 32(4): 145-153.
[14] DIAO Mingguang, LIU Wenjing, LI Jing, LIU Fang, WANG Yanzuo. Dynamic change detection method of vector result data in mine remote sensing monitoring[J]. Remote Sensing for Land & Resources, 2020, 32(3): 240-246.
[15] Wenya LIU, Anzhi YUE, Jue JI, Weihua SHI, Ruru DENG, Yeheng LIANG, Longhai XIONG. Urban green space extraction from GF-2 remote sensing image based on DeepLabv3+ semantic segmentation model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 120-129.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech