Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (4) : 11-19     DOI: 10.6046/gtzyyg.2019.04.02
|
Fusion algorithm evaluation of Landsat 8 panchromatic and multispetral images in arid regions
Liping YANG1, Meng MA2, Wei XIE2, Xueping PAN2
1. School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China;
2. School of Earth Sciences and Resources, Chang’an University, Xi’an 710054, China;
Download: PDF(3738 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

With lower contrast and confidence level, single factor evaluation index is not very effective in the comprehensive evaluation of pixel level image fusion algorithms of Landsat 8 in arid regions. Based on the Landsat 8 image of Juyanze area, 11 single factor indicators and object-oriented classification method were used to compare the following six image fusion algorithms, i.e., Principal Component (PC), Brovey Transform (BT), Hue-Saturation-Value Transform (HSV), Gram-Schmidt Pan Sharpening (G-S), High-pass filtering(HPF) and Wavelet Transform (WT) according to the spatial information quantity, spectral feature and classification accuracy. The results indicate that the spatial resolution and texture features of all fusion images are enhanced in comparison with the original image. HSV is proved to be the best algorithm to highlight the texture features in arid regions, but its spectral fidelity is bad. WT exhibits an excellent capability in maintaining the spectral information, and its capability of revealing spatial details is just next to the HSV method. Therefore, WT is considered the most suitable algorithm for image fusion of Landsat 8 in this study. Taking the spatial information quantity and spectral features into account simultaneously, the authors hold that PC and G-S have moderate performance, and their performance is a little lower than that of HPF, while the performance of BT is the worst. The classification results show that the classification accuracy of WT and HPF is improved to some extent compared with the original image.

Keywords fusion algorithm      spectral information      spatial information      object-oriented classification      effect evaluation     
:  TP79  
Issue Date: 03 December 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Liping YANG
Meng MA
Wei XIE
Xueping PAN
Cite this article:   
Liping YANG,Meng MA,Wei XIE, et al. Fusion algorithm evaluation of Landsat 8 panchromatic and multispetral images in arid regions[J]. Remote Sensing for Land & Resources, 2019, 31(4): 11-19.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.04.02     OR     https://www.gtzyyg.com/EN/Y2019/V31/I4/11
Fig.1  Location of research area
评价指标 计算公式 参数及含义
均值(U),表示影像像素灰度的平均值 U=1MNi=1Mj=1NZi,j ij分别为同一波段影像中各像元的行列号; MN分别为影像行列数; Z(i,j)为像元的灰度值
标准差(σ),反映图像各像元灰度离散情况 σ=1MNi=1Mj=1NZ(i,j)-Z-2 Z-为像元的灰度平均值
平均梯度(G-),反映图像对微小细节变化的表达能力 G-=1M×Ni=1Mj=1N12ΔIx2+ΔIy2 ΔIxΔIy分别表示xy方向的一阶差分
信息熵(H),表示偏离影像直方图高峰灰度区的大小 H=-i=1LPilbPi L为图像的最大灰度级; Pi为图像像元灰度值为i的概率
联合熵(CE),用于评价多波段影像总信息量 CE=-i1=0L-1i2=0L-1Pi1i2lbPi1i2 Pi1i2表示图像XY的像元灰度值i1i2的联合分布概率
空间频率(SF),反映影像的总体活跃程度,可通过行频率和列频率计算 SF=HF2+VF2HF=i=1Mj=2NZi,j-Zi,j-12MN-1VF=i=2Mj=1NZi,j-Zi-1,j2M-1N HF为水平方向频率; VF为垂直方向频率
结构相似性(SSIM),是符合人眼视觉系统特性的图像质量客观评价指标 SSIMX,Y=LX,Y×CX,Y×SX,Y      =2uXuY+C12σXY+C2uX2+uY2+C1σX2+σY2+C2LX,Y=2uXuY+C1uX2+uY2+C1CX,Y=2σXσY+C2σX2+σY2+C2SX,Y=σXY+C3σXσY+C3 L(X,Y),C(X,Y)和S(X,Y)
分别为亮度比较、对比度比较和结构比较; uX,uY,σX2,σY2σXY分别为影像XY的均值、方差和协方差; C1,C2C3为常数; C1=(K1×L)2; C2=(K2×L)2; C3=C2/2; K1=0.01; K2=0.03; L=255
峰值信噪比(PSNR),衡量图像失真或噪声水平的客观指标 PSNR=10lgMN×MaxYi,j2i=1Mj=1NXi,j-Yi,j2 X(i,j)为原始多光谱影像像素值; Y(i,j)为融合影像像素值; Max[Y(i,j)]为融合影像最大值
光谱扭曲度(Di),用于评价多光谱信息的保持程度 Di=1MNi=1Mj=1NXi,j-Yi,j
评价指标 计算公式 参数及含义
偏差指数(D),表示融合影像和原始影像灰度值的偏差 D=1MNi=1Mj=1NXi,j-Yi,jYi,j
相关系数(g),反映2幅影像的相关程度 γ=i=1Mj=1NXi,j-uXYi,j-uYi=1Mj=1NXi,j-uX2Yi,j-uY2
Tab.1  Evaluation index
Fig.2  Comparison of image fusion results
Fig.3  Comparison of image fusion results in local areas A, B and C
评价指标 原始影像 PC法 BT法 HSV法 G-S法 HPF法 WT法
均值 86.616 1 101.682 0 33.077 9 105.451 5 104.975 4 81.893 3 91.212 9
标准差 60.412 5 67.648 2 22.378 6 78.239 3 69.805 9 54.877 7 62.843 5
平均梯度 1.840 7 1.043 0 0.482 7 2.590 8 1.081 3 1.066 5 1.500 2
信息熵 5.178 2 4.668 0 3.907 3 5.404 8 4.784 9 4.667 2 5.225 6
联合熵 ? 9.899 9 8.896 7 10.225 3 9.887 1 9.715 9 10.186 7
空间频率 9.634 4 6.997 0 2.677 4 11.707 5 7.262 6 7.115 7 8.513 8
结构相似性 1.000 0 0.923 3 0.720 2 0.839 5 0.918 5 0.951 2 0.951 3
峰值信噪比 ? 21.685 3 11.766 1 18.989 4 20.545 8 24.459 3 31.354 9
光谱扭曲度 ? 15.594 4 53.610 7 21.593 5 18.666 7 7.960 6 4.890 7
偏差指数 ? 0.391 6 0.724 6 0.483 7 0.384 7 0.350 0 0.284 8
相关系数 1.000 0 0.979 3 0.973 8 0.982 5 0.980 2 0.988 3 0.996 7
Tab.2  Evaluation indicators of fusion results
Fig.4  Classification results of different fusion methods
融合方法 总体分类
精度/%
Kappa
系数
原始多光谱影像 84.98 0.806 9
PC法 83.76 0.782 3
BT法(阈值分割法对滩涂分类) 82.72 0.772 4
BT法(Cart分类器决策树算法对滩涂分类) 84.30 0.793 6
HSV法 80.73 0.752 5
G-S法 84.18 0.790 1
HPF法 85.89 0.809 8
WT法 88.28 0.846 8
Tab.3  Accuracy evaluation
Fig.5  Accuracy comparison of different ground objects
[1] 翁永玲, 田庆久 . 遥感数据融合方法分析与评价综述[J].遥感信息,2003(3):49-54.
[1] Weng Y L, Tian Q J . Analysis and evaluation of method on remote sensing data fusion[J].Remote Sensing Information,2003(3):49-54.
[2] 刘锟, 付晶莹, 李飞 . 高分一号卫星4种融合方法评价[J]. 遥感技术与应用, 2015,30(5):980-986.
doi: 10.11873/j.issn.1004-0323.2015.5.0980
[2] Liu K, Fu J Y, Li F . Evaluation study of four fusion methods of GF-1 pan and multi-spectral images[J]. Remote Sensing Technology and Application, 2015,30(5):980-986.
[3] 郑雅兰, 王雷光, 陆翔 . 高分二号全色-多光谱影像融合方法对比研究[J]. 西南林业大学学报(自然科学版), 2018,38(2):103-111.
[3] Zheng Y L, Wang L G, Lu X . Comparison of image fusion methods for GF-2 panchromatic-multispectral[J]. Natural Science of Southwest Forestry University, 2018,38(2):103-111.
[4] 邢元军, 刘晓农, 宋亚斌 , 等. 国产高分辨率遥感影像融合方法比较与分析[J]. 中南林业科技大学学报, 2016,36(10):83-88.
[4] Xing Y J, Liu X N, Song Y B , et al. Research on fusion method comparison and analysis for domestic high resolution satellite images[J]. Journal of Central South University of Forestry and Technology, 2016,36(10):83-88.
[5] 郭蕾, 杨冀红, 史良树 , 等. SPOT6遥感图像融合方法比较研究[J]. 国土资源遥感, 2014,26(4):71-77.doi: 10.6046/gtzyyg.2014.04.12.
doi: 10.6046/gtzyyg.2014.04.12
[5] Guo L, Yang Y H, Shi L S , et al. Comparative study of image fusion algorithms for SPOT6[J]. Remote Sensing for Land and Resources, 2014,26(4):71-77.doi: 10.6046/gtzyyg.2014.04.12.
[6] 杨丽萍, 夏敦胜, 陈发虎 . Landsat 7 ETM+全色与多光谱数据融合算法的比较[J]. 兰州大学学报(自然科学版), 2007,43(4):7-11.
[6] Yang L P, Xia D S, Chen F H . On fusion algorithm of Landsat 7 ETM+ pan and multi-spectral images[J]. Natural Sciences of Lanzhou University, 2007,43(4):7-11.
[7] 谢士琴, 赵天忠, 王威 , 等. 高分二号卫星影像融合方法比较研究[J]. 系统仿真学报, 2017,29(11):2742-2746.
[7] Xie S Q, Zhao T Z, Wang W , et al. Study on fusion algorithms of GF-2 satellite image[J]. Journal of System Simulation, 2017,29(11):2742-2746.
[8] Song H H, Huang B, Liu Q S , et al. Improving the spatial resolution of Landsat TM/ETM+ through fusion with Spot5 images via learning-based super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,53(3):1195-1204.
[9] 孙攀, 董玉森, 陈伟涛 , 等. 高分二号卫星影像融合及质量评价[J]. 国土资源遥感, 2016,28(4):108-113.doi: 10.6046/gtzyyg.2016.04.17.
doi: 10.6046/gtzyyg.2016.04.17
[9] Sun P, Dong Y S, Chen W T , et al. Research on fusion of GF-2 imagery and quality evaluation[J]. Remote Sensing for Land and Resources, 2016,28(4):108-113.doi: 10.6046/gtzyyg.2016.04.17.
[10] 张兵, 崔希民, 韦锐 , 等. 基于RS与GIS多源数据融合的高原区地质调查研究[J]. 煤炭工程, 2016,48(3):99-102.
[10] Zhang B, Cui X M, Wei R , et al. Multi-data fusion in geological survey and mapping in plateau area based on RS and GIS[J]. Coal Engineering, 2016,48(3):99-102.
[11] 姬永杰, 岳彩荣, 张王菲 . SAR数据与光学数据融合在土地覆盖分类中的应用研究[J]. 西南林业大学学报, 2016,36(3):158-162.
[11] Ji Y J, Yue C R, Zhang W F . Use fusion of SAR and optical images for land cover classification[J]. Journal of Southwest Forestry University, 2016,36(3):158-162.
[12] 龚家栋, 程国栋, 张小由 , 等. 黑河下游额济纳地区的环境演变[J]. 地球科学进展, 2002,17(4):491-496.
[12] Gong J D, Cheng G D, Zhang X Y , et al. Environmental changes of Ejina region in the lower reaches of Heihe river[J]. Advance In Earth Sciences, 2002,17(4):491-496.
[13] 张玉君 . Landsat 8简介[J]. 国土资源遥感, 2013,25(1):176-177.
[13] Zhang Y J . Introduction to Landsat 8[J]. Remote Sensing for Land and Resources, 2013,25(1):176-177.
[14] Welch R . Merging multiresolution Spot HRV and Landsat TM data[J]. Photogrammetric Engineering and Remote Sensing, 1987,53(3):301-303.
[15] Vol. N . Multispectral imagery band sharpening study[J]. Photogrammetric Engineering and Remote Sensing, 1996,62(9):1075-1084.
[16] Koutsias N, Karteris M, Chuvieco E . The use of intensity-hue-saturation transformation of Landsat-5 thematic mapper data for burned land mapping[J]. Photogrammetric Engineering and Remote Sensing, 2000,66(7):829-839.
[17] Ehlers M, Klonus S, Åstrand P J , et al. Multi-sensor image fusion for pansharpening in remote sensing[J]. International Journal of Image and Data Fusion, 2010,1(1):25-45.
[18] Schowengerdt R A . Reconstruction of multispatial, multispectral image data using spatial frequency content[J]. Photogrammetric Engineering and Remote Sensing, 1980,46(10):1325-1334.
[19] Psjr C, Sides S C, Anderson J A . Comparison of three different methods to merge multiresolution and multispectral data:Landsat TM and SPOT panchromatic[J]. Photogrammetric Engineering and Remote Sensing, 1991,57(3):265-303.
[20] 周芳, 王鹏波, 李春升 . 遥感图像融合效果评估方法[J]. 现代雷达, 2013,35(3):19-23.
[20] Zhou F, Wang P B, Li C S . Evaluation method of remote sensing image fusion effect[J]. Modern Radar, 2013,35(3):19-23.
[21] 阳方林, 郭红阳, 杨风暴 . 像素级图像融合效果的评价方法研究[J]. 测试技术学报, 2002,16(4):276-279.
[21] Yang F L, Guo H Y, Yang F B . Study of evaluation methods on effect of pixel-level image fusion[J]. Journal of test and measurement technology, 2002,16(4):276-279.
[22] 狄红卫, 刘显峰 . 基于结构相似度的图像融合质量评价[J]. 光子学报, 2006,35(5):766-771.
url: http://www.opticsjournal.net/Articles/Abstract?aid=OJ061025000035HdKgMj
[22] Di H W, Liu X F . Image fusion assessment based on structural similarity[J]. Acta Photonica Sinica, 2006,35(5):766-771.
[23] 刘家福, 刘吉平, 姜海玲 . eCognition数字图像处理方法[M]. 北京: 科学出版社, 2017: 56-62.
[23] Liu J F, Liu J P, Jiang H L. Ecognition digital image processing method[M]. Beijing: Science Press, 2017: 56-62.
[1] FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 153-161.
[2] Jisheng XIA, Mengying MA, Zhongren FU. Extraction of mechanical damage surface using GF-2 remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 26-32.
[3] Hui HUANG, Xiongwei ZHENG, Genyun SUN, Yanling HAO, Aizhu ZHANG, Jun RONG, Hongzhang MA. Seismic image classification based on gravitational self-organizing map[J]. Remote Sensing for Land & Resources, 2019, 31(3): 95-103.
[4] Zhen CHEN, Yunshi ZHANG, Yuanyu ZHANG, Lingling SANG. A study of remote sensing monitoring methods for the high standard farmland[J]. Remote Sensing for Land & Resources, 2019, 31(2): 125-130.
[5] Wanjun LIU, Tianhui LI, Haicheng QU. Hyperspectral similar sample classification algorithm based on Fisher criterion and TrAdaboost[J]. Remote Sensing for Land & Resources, 2018, 30(4): 41-48.
[6] SU Hongjun, LIU Hao. A novel dynamic classifier selection algorithm using spatial-spectral information for hyperspectral classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 15-21.
[7] HUA Yongchun, LI Zengyuan, GAO Zhihai, GUO Zhong. Extraction of Nitaria tangutorum dune in Minqin County based on GF-2 data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 71-77.
[8] LI Xuedong, ZHANG Hongyan, YANG Guangbin, LI Xiaosong, ZHOU Yue. Extraction of land cover information of Karst based on landform[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 138-145.
[9] LIANG Jianping, MA Daxi, MAO Dehua, WANG Zongming. Remote sensing based estimation of Phragmites australis aboveground biomass in Shuangtai Estuary National Nature Reserve[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 60-66.
[10] ZHAO Zhiming, ZHOU Xiaocheng, FU Qiankun, WANG Xiaoqin. Method for extraction of building height information based on ZY-3 image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 19-24.
[11] LIU Huifen, YANG Yingbao, YU Shuang, KONG Lingting, ZHANG Yong. Adaptability evaluation of different fusion methods on ZY-3 and Landsat8 images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 63-70.
[12] XU Honggen, SONG Yan. Change detection method taking into account shadow information for high resolution remote sensing image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 16-21.
[13] DONG Zhang-yu, ZHAO Ping, LIU Dian-wei, WANG Zong-ming, TANG Xu-guang, Liu Jing-yi. An Improved Wavelet Transformation Image Fusion Method and Evaluation of Its Fusion Result[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 44-49.
[14] LI Xuan, GUO An-hong, ZHUANG Li-wei. The Main Crop Diseases and Pests Meteorology Level Forecast System Based on GIS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 104-109.
[15] LI Xue-yuan, LI Cheng-zun, ZHAO Bo. The Method for Transformation from the Data File Based on ArcGIS Engine to the Shapefile[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(3): 156-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech