Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (4) : 104-111     DOI: 10.6046/gtzyyg.2019.04.14
|
GIS-based estimation of fractal dimension and geomorphological development of the water system in the dam construction area
Quan AN1,3, Zhonghua HE1,2,3(), Cuiwei ZHAO1, Hong LIANG1,3, Shulin JIAO1,3, Chaohui YANG4
1. School of Geographic and Environmental Science, Guizhou Normal University, Guiyang 550001, China
2. State Engineering Technology Institute For Karst Desertification Control, Guizhou Normal University, Guiyang 550001,China
3. Key Laboratory of Remote Sensing Application on Mountain Resources and Environment in Guizhou Province, Guiyang 550001, China
4. Department of Emergency Management of Guizhou Province, Guiyang 550001, China
Download: PDF(1802 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The fractal dimension of water system is one of the quantitative representation methods for determining geomorphic development degree. The study of water system fractal dimension is of great significance for the investigation of the sedimentation mechanism of karst dam basin landform. Advanced space borne thermal emission and reflection radio mater global digital elevation model (ASTER-GDEM) was used as a data source for extracting water system and 30 m resolution ASTER-GDEM. Based on the ArcGIS 10.2, Horton-Strahler theory, water grid method and fishing net method, the authors estimated the water system fractal dimension of Longchangqiao watershed in the dam construction area of Yuzhong, and explore the influence of landform development on the hydrological characteristics of the basin in dam construction. Some conclusions have been reached: The fractal dimensions of the water system estimated by different methods and different data sources under the complex geomorphic structure of the karst area are quite different. The fractal dimension values of the extracted water system of 1.50 million topographic maps estimated by the Horton-Strahler method, the water grid method and the fishing net method are 1.69, 1, 53, 1.54 respectively. The fractal dimensions estimated by 30 m resolution ASTER-GDEM extraction water system are 0.66, 1.59, 1.60. Among them, the fractal dimension values estimated by the Horton-Strahler method are significantly different, with the difference reaching 1.03. Comprehensive analysis of Horton-Strahler theory, water grid method and fishing net method for estimating the relationship between the fractal dimension of different data source water systems and actual landform development in karst dam construction area shows that the water system fractal dimension estimated by the fishing net method and the actual landform status of the study area are most consistent with each other. According to the estimation of the water system estimated by the fishing net, the fractal dimension of the extracted water system estimated by the fishing net method is 1.54, and the fractal dimension estimated by the 30 m resolution ASTER-GDEM extraction system is about 1.60, which suggests that the study area is at the late stage of the young period and the early stage of mature period in geomorphological development, and the results coincide with the actual development of the study area. In addition, three methods were used to estimate the fractal dimension accuracy of the water system in the karst dam basin, and the results show the following order: fishnet method>water grid method>Horton-Strahler method.

Keywords GIS      karst landform      ASTER-GDEM      fractal dimension      adaptive analysis     
:  P33  
Corresponding Authors: Zhonghua HE     E-mail: zhonghuahe@gznu.edu.cn
Issue Date: 03 December 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Quan AN
Zhonghua HE
Cuiwei ZHAO
Hong LIANG
Shulin JIAO
Chaohui YANG
Cite this article:   
Quan AN,Zhonghua HE,Cuiwei ZHAO, et al. GIS-based estimation of fractal dimension and geomorphological development of the water system in the dam construction area[J]. Remote Sensing for Land & Resources, 2019, 31(4): 104-111.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.04.14     OR     https://www.gtzyyg.com/EN/Y2019/V31/I4/104
Fig.1  Research area overview
河流
等级
数目/条 平均长
度/km
分叉比/
Rx
河长比/
RL
lgRx lgRL
1 1 557 1 191.470
1.981 0.559 0.297 -0.252
2 786 666.210
2.005 0.560 0.302 -0.520
3 392 373.230
3.187 0.458 0.503 -0.298
4 123 171.010
2.617 0.481 0.418 -0.379
5 47 82.330
5.875 0.395 0.769 -0.114
6 8 32.520
Tab.1  Horton-Strahler method parameters based on water system of topographic map
河流
等级
数目/条 平均长
度/km
Rb RL lgRb lgRL
1 877 1 363.910
2.016 0.486 0.305 -0.516
2 435 663.030
2.112 0.464 0.325 -0.489
3 206 307.920
1.392 0.622 0.144 -0.843
4 148 191.470
2.056 0.526 0.313 -0.505
5 72 100.750
72.000 0.028 1.857 0.269
6 1 2.850
Tab.2  Horton-Strahler method parameters based on water system of ASTER-GDEM
1:5万栅格水系法 30 m空间分辨率ASTER-GDEM栅格水系法
栅格边长r 栅格数目N(r) Lgr LgN(r) 栅格边长r 栅格数目N(r) Lgr LgN(r)
500 4 975 2.699 3.697 500 5 754 2.699 3.760
1 000 2 161 3.000 3.335 1 000 2 614 3.000 3.417
1 500 1 225 3.176 3.088 1 500 1 526 3.176 3.184
2 000 810 3.301 2.908 2 000 1 004 3.301 3.002
2 500 569 3.398 2.755 2 500 675 3.398 2.829
3 000 424 3.477 2.627 3 000 491 3.477 2.691
3 500 328 3.544 2.516 3 500 374 3.544 2.573
4 000 269 3.602 2.430 4 000 295 3.602 2.470
4 500 216 3.653 2.334 4 500 244 3.653 2.387
5 000 187 3.699 2.272 5 000 205 3.699 2.312
5 500 161 3.740 2.207 5 500 163 3.740 2.212
6 000 143 3.778 2.155 6 000 146 3.778 2.164
6 500 117 3.813 2.068 6 500 131 3.813 2.117
7 000 106 3.845 2.025 7 000 114 3.845 2.057
7 500 93 3.875 1.968 7 500 100 3.875 2.000
8 000 85 3.903 1.929 8 000 90 3.903 1.954
8 500 78 3.929 1.892 8 500 79 3.929 1.898
9 000 70 3.954 1.845 9 000 76 3.954 1.881
9 500 65 3.978 1.813 9 500 69 3.978 1.839
10 000 59 4.000 1.771 10 000 64 4.000 1.806
Tab.3  Water system of topographic map and ASTER-GDEM grid parameters
地形图水系渔网法 ASTER-GDEM水系渔网法
栅格边长r 栅格数目N(r) Lgr LgN(r) 栅格边长r 栅格数目N(r) Lgr LgN(r)
500 5 023 2.699 3.701 500 5 723 2.699 3.758
1 000 2 169 3.000 3.336 1 000 2 574 3.000 3.411
1 500 1 238 3.176 3.093 1 500 1 561 3.176 3.193
2 000 800 3.301 2.903 2 000 996 3.301 2.998
2 500 566 3.398 2.753 2 500 686 3.398 2.836
3 000 427 3.477 2.630 3 000 491 3.477 2.691
3 500 322 3.544 2.508 3 500 373 3.544 2.572
4 000 264 3.602 2.422 4 000 295 3.602 2.470
4 500 221 3.653 2.344 4 500 238 3.653 2.377
5 000 177 3.699 2.248 5 000 200 3.699 2.301
5 500 154 3.740 2.188 5 500 172 3.740 2.236
6 000 131 3.778 2.117 6 000 143 3.778 2.155
6 500 121 3.813 2.083 6 500 126 3.813 2.100
7 000 101 3.845 2.004 7 000 113 3.845 2.053
7 500 92 3.875 1.964 7 500 101 3.875 2.004
8 000 80 3.903 1.903 8 000 90 3.903 1.954
8 500 74 3.929 1.869 8 500 82 3.929 1.914
9 000 68 3.954 1.833 9 000 71 3.954 1.851
9 500 64 3.978 1.806 9 500 65 3.978 1.813
10 000 57 4.000 1.756 10 000 61 4.000 1.785
Tab.4  Water system of topographic map and ASTER-GDEM fishing net method parameters
参数 地形图水系 ASTER-GDEM水系
Horton-
Strahler法
栅格水
系法
渔网
Horton-
Strahler法
栅格水
系法
渔网
分维值 1.69 1.53 1.54 0.66 1.59 1.60
R2 0.996 6 0.996 4 0.994 1 0.993 4
Tab.5  Comparison of fractal values from water system of topographic map and ASTER-GDEM by different methods
Fig.2  Landform types and mountain shadow maps of various watersheds in the study area
流域 地貌
类型
面积/
km2
占向阳流
域比例
占研究
区比例
成因类型
向阳流域 K化低山谷地 29.46 3.54 0.72 F
K化中山谷地 59.01 7.09 1.45 K2
峰丛谷地 193.88 23.31 4.76 K1,K2
峰丛洼地 60.94 7.33 1.5 K2
峰林溶原(盆地) 173.25 20.83 4.25 K1、K2
浅切中山 316.39 38.04 7.77 F
阳长流域 K化中山谷地 427.07 26.75 10.48 F,K1,K2
峰丛谷地 757.33 47.43 18.59 K1,K2
峰丛洼地 185.6 11.62 4.56 K1,K2
峰林溶原(盆地) 128.82 8.07 3.16 K1,K2
浅切中山 102.38 6.41 2.51 F
深切中山 36.65 3.01 0.9 F
龙场桥流域 K化低山谷地 16.88 1.03 0.41 K2
K化中山谷地 711.24 43.23 17.46 K1,K2
峰丛谷地 196.62 11.95 4.83 K1,K2
峰丛洼地 676.79 41.14 16.61 K1,K2
深切中山 43.53 2.64 1.07 F
Tab.6  Geomorphological development parameters and area ratio of different watersheds
[1] 何隆华, 赵宏 . 水系的分形维数及其含义[J]. 地理科学, 1996,16(2):124-128.
[1] He L H, Zhao H . Fractal dimension of water system and its implications[J]. Geographical Science, 1996,16(2):124-128.
[2] 郭忆, 毕硕本, 闫业超 , 等. 拉林河流域水系分维研究[J]. 测绘科学, 2015,40(4):63-66,140.
[2] Guo Y, Bi S B, Yan Y C , et al. Study on fractal dimension of water system in Lalin River Basin[J]. Journal of Surveying and Mapping, 2015,40(4):63-66,140.
[3] 贺晓晖, 张树君, 胡志博 , 等. 基于DEM的南水北调中线水源区水系分维估算[J].测绘与空间地理信息,2016(9):92-95.
[3] He X H, Zhang S J, Hu Z B , et al. Estimation of fractal dimension of water system in the Middle Route of South-to-North Water Transfer Project based on DEM[J].Surveying and Spatial Geography Information,2016(9):92-95.
[4] 吕爱锋, 陈嘻, 王纲胜 . 基于DEM的流域水系分维估算方法探讨[J]. 干旱区地理, 2002,25(4):315-320.
[4] Lv A F, Chen X, Wang G S . DEM-based method for estimating fractal dimension of watershed system[J]. Arid Land Geography, 2002,25(4):315-320.
[5] 江滔, 武伟, 刘洪斌 . 基于DEM的重庆长江流域水系分维估算[J]. 中国农学通报, 2010,26(15):365-368.
[5] Jiang T, Wu W, Liu H B . Estimation of fractal dimension of water system in the Yangtze River Basin of Chongqing based on DEM[J]. Chinese Agricultural Science Bulletin, 2010,26(15):365-368.
[6] 曹小敏, 罗明良, 刘承栩 . 基于ASTER-GDEM的延河流域水系分维特征分析[J]. 遥感信息, 2013,28(1):34-37.
[6] Cao X M, Luo M L, Liu C Y . Analysis of fractal dimensions of the Yanhe River Basin based on ASTER-GDEM[J]. Remote Sensing Information, 2013,28(1):34-37.
[7] 郑楠炯, 周买春, 刘远 . 基于GIS的Horton水系分维值估算——以韩江流域为例[J].中国农村水利水电,2017(12):81-85.
[7] Zheng N J, Zhou M C, Liu Y . Estimation of fractal dimension of Horton water system based on GIS——Taking Hanjiang River Basin as an example[J].China Rural Water and Hydropower,2017(12):81-85.
[8] 贺中华, 梁虹, 黄法苏 , 等. 基于DEM的喀斯特流域地貌发育影响因素分析[J]. 测绘科学, 2008,33(4):70-72.
[8] He Z H, Liang H, Huang F S , et al. Analysis of influencing factors of geomorphological development in Karst basin based on DEM[J]. Journal of Surveying and Mapping, 2008,33(4):70-72.
[9] 原晓平, 刘少峰, 田贵中 , 等. 基于DEM的格尔木河流域水系分维分析[J]. 国土资源遥感, 2013,25(1):111-116.doi: 10.6046/gtzyyg.2013.01.20.
doi: 10.6046/gtzyyg.2013.01.20
[9] Yuan X P, Liu S F, Tian G Z , et al. Fractal dimension analysis of the water system in the Golmud River Basin based on DEM[J]. Remote Sensing for Land and Resources, 2013,25(1):111-116.doi: 10.6046/gtzyyg.2013.01.20.
[10] 丰满, 张征, 朱凌 , 等. 基于DEM的滇池流域水系提取及分维值探讨[J]. 环境科学与技术, 2010,33(2):11-14.
[10] Feng M, Zhang Z, Zhu L , et al. Extraction and fractal dimension of water system in Dianchi Lake Basin based on DEM[J]. Environmental Science and Technology, 2010,33(2):11-14.
[11] 王国重, 李中原, 屈建钢 , 等. 基于DEM的丹江口水库水源区水系分形特征研究[J].中国农村水利水电,2017(4):121-124.
[11] Wang G Z, Li Z Y, Qu J G , et al. Fractal characteristics of water system in Danjiangkou Reservoir water source area based on DEM[J].China Rural Water and Hydropower,2017(4):121-124.
[12] 黄晶晶, 张卫华, 魏朝富 . 基于ArcGIS的丘陵山区局地水系提取及分维值估算[J].中国农村水利水电,2012(11):1-3.
[12] Huang J J, Zhang W H, Wei C F . Extraction and fractal dimension estimation of local water system in Hilly Mountainous area based on ArcGIS[J].China Rural Water and Hydropower,2012(11):1-3.
[13] 黎武, 王汝兰, 徐珍 , 等. 基于DEM的延河流域河网水系分形特征研究[J]. 安徽农学通报, 2017,23(5):121-124.
[13] Li W, Wang R L, Xu Z , et al. Fractal characteristics of river network in Yanhe River Basin based on DEM[J]. Anhui Agricultural Science Bulletin, 2017,23(5):121-124.
[14] 刘涓, 郑畅, 张卫华 , 等. 四川盆地丘陵山区局地水系分形分维研究[J]. 西南大学学报(自然科学版), 2012,34(3):76-82.
[14] Liu J, Zheng C, Zhang W H , et al. Fractal dimension of local water system in hilly area of Sichuan Basin[J]. Journal of Southwest University(Natural Science), 2012,34(3):76-82.
[15] 陈彦光, 刘继生 . 水系结构的分形和分维——Horton水系定律的模型重建及其参数分析[J]. 地球科学进展, 2001,16(2):178-183.
[15] Chen Y G, Liu J S . Fractal and fractal dimension of water system structure——model reconstruction and parameter analysis of Horton water system[J]. Advances in Earth Science, 2001,16(2):178-183.
[16] 王倩, 邹欣庆, 朱大奎 . 基于GIS技术的秦淮河流域水系分维研究[J]. 水科学进展, 2002,13(6):751-756.
[16] Wang Q, Zhou X Q, Zhu D K . Study on fractal dimension of water system in Qinhuai River Basin based on GIS technology[J]. Advances in Water Science, 2002,13(6):751-756.
[17] 王林, 陈兴伟 . 基于DEM的流域水系分维计算与结果分析[J]. 地球信息科学学报, 2007,9(4):133-134.
[17] Wang L, Chen X W . Fractal dimension calculation and results analysis of watershed system based on DEM[J]. Journal of Earth Information Science, 2007,9(4):133-134.
[18] 范林峰, 胡瑞林, 张小艳 , 等. 基于GIS和DEM的水系三维分形计盒维数的计算[J]. 地理与地理信息科学, 2012,28(6):28-30.
[18] Fan L F, Hu R L, Zhang X Y , et al. Calculation of three-dimensional fractal box dimension of water system based on GIS and DEM[J]. Geography and Geography Information, 2012,28(6):28-30.
[19] 严宝文, 罗欢 . 泾、洛河水系与径流过程的分形特征及相互关系研究[J].中国农村水利水电,2017(7):116-119.
[19] Yan B W, Luo H . Fractal characteristics and correlation of water system and runoff process in Handan and Luohe Rivers[J].China Rural Water and Hydropower,2017(7):116-119
[20] 杨秀春, 朱晓华 . 中国七大流域水系与洪涝的分维及其关系研究[J]. 灾害学, 2002,17(3):9-13.
[20] Yang X C, Zhu X H . Study on the fractal dimension and relationship of water system and flood in seven large watersheds in China[J]. Journal of Catastrophology, 2002,17(3):9-13.
[21] 宋向阳, 吴发启, 赵龙山 , 等. 基于DEM的延河流域水文特征提取与分析[J]. 干旱地区农业研究, 2012,30(4):200-206.
[21] Song X Y, Wu F Q, Zhao L S , et al. Extraction and analysis of hydrological characteristics in Yanhe River basin based on DEM[J]. Agriculture Research in the Arid Areas, 2012,30(4):200-206.
[22] 易卫华, 杨平 . 基于DEM数字河网提取时集水面积阈值的确定[J]. 江西水利科技, 2008,34(4):259-262.
[22] Yi W H , Y P.Determination of the catchment area threshold based on DEM digital river network extraction[J]. Journal of Jiangxi Water Science and Technology, 2008,34(4):259-262.
[23] 张行南, 刘羽婷, 刘伯娟 . 基于地形带分类的最佳阈值与河网密度关系研究[J]. 长江科学院院报, 2014,31(4):17-20.
doi: 10.3969/j.issn.1001-5485.2014.04.0042014, 31(04):17-20
[23] Zhang X N, Liu Y T, Liu B J . Research on the relationship between optimal threshold and river network density based on terrain classification[J]. Journal of Yangtze River Scientific Research Institute, 2014,31(4):17-20.
[24] 张树君, 朱勤东 . GIS环境下泾河流域水系特征的提取及探讨[J]. 人民黄河, 2014,36(10):55-57.
[24] Zhang S J, Zhu Q D . Extraction and discussion of water system characteristics in the Weihe River Basin under GIS environment[J]. People’s Yellow River, 2014,36(10):55-57.
[25] 任娟, 杨武年, 许娟 . 基于GIS与DEM的岷江上游流域水系分维值计算[J].地理空间信息,2015(1):77-79.
[25] Ren J, Yang W N, Xu J . Calculation of fractal dimension of water system in the upper reaches of Minjiang River based on GIS and DEM[J].Geospatial Information,2015(1):77-79.
[26] 芮孝芳 . 水文学原理[M]. 北京: 水利水电出版社, 2004.
[26] Rui X F. Principles of Hydrology[M]. Beijing: Water Resources and Hydropower Press, 2004.
[27] 周忠发, 朱昌丽, 谭玮颐 , 等. 基于空间开发适宜性评价的石漠化地区可持续发展研究——以贵州省盘州市为例[J]. 贵州师范大学学报(自然科学版), 2019,37(1):1-9.
[27] Zhou Z F, Zhu C L, Tan W Y . Study on sustainable development of rocky desertification region based on suitability evaluation of spatial development——Taking Panzhou City of Guizhou Province as an example[J]. Journal of Guizhou Normal University(Natural Science), 2019,37(1):1-9.
[28] 罗娅, 刘莉, 王青 , 等. 应用30 m ASTER GDEM数据估算贵州县域地表河网密度的适应性[J].贵州师范大学学报(自然科学版),2017(6):9-15.
[28] Luo Y, Liu L, Wang Q , et al. Adaptability of 30 meters ASTER GDEM data for estimating county-level surface drainage network density of Guizhou Province[J].Journal of Guizhou Normal University(Natural Sciences),2017(6):9-15.
[29] 钱莉莉, 贺中华, 梁虹 , 等. 基于降水Z指数的贵州省农业干旱时空演化特征[J]. 贵州师范大学学报(自然科学版), 2019,37(1):10-14.
[29] Qian L L, He Z H, Liang H , et al. Spatial-temporal evolution characteristics of agricultural drought based on precipitation Z index in Guizhou[J]. Journal of Guizhou Normal University(Natural Sciences), 2019,37(1):10-14.
[1] WU Yijie, KONG Xuesong. Simulation and development mode suggestions of the spatial pattern of “ecology-agriculture-construction” land in Jiangsu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 238-248.
[2] LI Dong, TANG Cheng, ZOU Tao, HOU Xiyong. Detection and assessment of the physical state of offshore artificial reefs[J]. Remote Sensing for Natural Resources, 2022, 34(1): 27-33.
[3] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[4] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[5] WANG Shuang, ZHANG Lei, ZHANG Junyong, WANG Yile. Characteristics of GIS applications in national fitness[J]. Remote Sensing for Natural Resources, 2021, 33(4): 265-271.
[6] ZHAO Longxian, DAI Jingjing, ZHAO Yuanyi, JIANG Qi, LIU Tingyue, FU Minghai. A study of mine site selection of the Duolong ore concentration area in Tibet based on RS and GIS technology[J]. Remote Sensing for Land & Resources, 2021, 33(2): 182-191.
[7] MIAO Miao, XIE Xiaoping. Spatial-temporal evolution analysis of Rizhao coastal zone during 1988—2018 based on GIS and RS[J]. Remote Sensing for Land & Resources, 2021, 33(2): 237-247.
[8] ZHANG Mengsheng, YANG Shuwen, JIA Xin, ZANG Liri. An automatic registration algorithm for remote sensing images based on grid index[J]. Remote Sensing for Land & Resources, 2021, 33(1): 123-128.
[9] YAO Kun, ZHANG Cunjie, HE Lei, LI Yuxia, LI Xiaoju. Dynamic evaluation and prediction of ecological environment vulnerability in the middle-upper reaches of the Yalong River[J]. Remote Sensing for Land & Resources, 2020, 32(4): 199-208.
[10] Yongquan WANG, Qingquan LI, Chisheng WANG, Jiasong ZHU, Xinyu WANG. Tethered UAVs-based applications in emergency surveying and mapping[J]. Remote Sensing for Land & Resources, 2020, 32(1): 1-6.
[11] Renbo SONG, Yuxin ZHU, Shangshan DING, Qiaoning HE, Xiyuan WANG, Yuexiang WANG. An automatic method for extracting skeleton lines from arbitrary polygons based on GIS spatial analysis[J]. Remote Sensing for Land & Resources, 2020, 32(1): 51-59.
[12] Yiqiang SHI, Qiuqin DENG, Jun WU, Jian WANG. Regression analysis of MODIS aerosol optical thickness and air quality index in Xiamen City[J]. Remote Sensing for Land & Resources, 2020, 32(1): 106-114.
[13] Xuanchi CHEN, Rong CHEN, Yufeng WU, Yueyue WANG. Research on the geological background of tea planting in Duyun City based on RS and GIS[J]. Remote Sensing for Land & Resources, 2020, 32(1): 224-231.
[14] Zhaorong MEI, Yunju LI, Xiang KANG, Shanbao WEI, Jianjun PAN. Temporal and spatial evolution in landscape pattern of mining site area based on moving window method[J]. Remote Sensing for Land & Resources, 2019, 31(4): 60-68.
[15] Jun CHEN, Runping SHEN, Bolun LI, Chaopu TI, Xiaoyuan YAN, Minyue ZHOU, Shaowu WANG. The development of plastic greenhouse index based on Logistic regression analysis[J]. Remote Sensing for Land & Resources, 2019, 31(3): 43-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech