Please wait a minute...
 
国土资源遥感  2019, Vol. 31 Issue (3): 234-241    DOI: 10.6046/gtzyyg.2019.03.29
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于MODIS数据的典型草原非光合植被覆盖度估算
柴国奇, 王静璞(), 王光镇, 韩柳, 王周龙
鲁东大学资源与环境工程学院,烟台 264025
Estimation of fractional cover of non-photosynthetic vegetation in typical steppe based on MODIS data
Guoqi CHAI, Jingpu WANG(), Guangzhen WANG, Liu HAN, Zhoulong WANG
College of Resource and Environment Engineering, Ludong University, Yantai 264025, China
全文: PDF(2455 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

非光合植被(non-photosynthetic vegetation,NPV)在草原生态系统中扮演了重要角色,影响着生态系统的碳、水和能量的流动与循环。定量掌握草原非光合植被覆盖度(fractional cover of non-photosynthetic vegetation,fNPV)信息对草地资源的科学有效利用以及生态环境保护具有重要意义。以内蒙古自治区锡林郭勒典型草原为研究区,运用线性回归分析方法,建立基于MODIS (MCD43A4)数据构建的多种非光合植被指数(non-photosynthetic vegetation indices,NPVIs)和野外实测fNPV数据的反演模型,并对模型的估算结果进行验证。研究结果表明,基于MODIS数据构建的NPVIs与fNPV的相关性较好,相关性依次为: DFI,SWIR32,NDTI,STI,NDI7,NDI5及NDSVI; DFI指数反演fNPV模型的估算精度较高,可用于典型草原地区大范围fNPV的快速监测。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
柴国奇
王静璞
王光镇
韩柳
王周龙
关键词 MCD43A4非光合植被非光合植被指数典型草原    
Abstract

Non-photosynthetic vegetation (NPV) is an important component of grassland ecosystem, which affects the flow and cycle of carbon, water and energy in the ecosystem. It is of great significance to quantitatively grasp the fractional cover of non-photosynthetic vegetation (fNPV) information for the scientific and effective utilization of grassland resources and the protection of the ecological environment. Taking the typical steppe of Xilingol in Inner Mongolia as the research area and using the regression analysis method, the authors used a variety of non-photosynthetic vegetation indices (NPVIs) based on MODIS (MCD43A4) data and field measured fNPV data to invert the fNPV model and evaluated the estimation effect of the model. The results show that the NPVIs based on MODIS data have a good correlation with fNPV. The correlations are as follows: DFI, SWIR32, NDTI, STI, NDI7, NDI5 and NDSVI. The DFI index inversion fNPV model has higher estimation accuracy. It can be applied to the rapid monitoring of large scale fNPV in typical steppe.

Key wordsMCD43A4    non-photosynthetic vegetation    non-photosynthetic vegetation indices    typical steppe
收稿日期: 2018-07-25      出版日期: 2019-08-30
:  TP79  
基金资助:国家自然科学基金青年项目“基于DFI指数的典型草原非光合植被覆盖度遥感估算及动态变化研究”(41701005);山东省自然科学基金项目“基于像元三分模型的光合/非光合植被覆盖度遥感估算”共同资助(ZR2017PD006)
通讯作者: 王静璞
作者简介: 柴国奇(1993-),男,硕士研究生,主要从事植被遥感监测方面的研究。Email: chaiqige@163.com.。
引用本文:   
柴国奇, 王静璞, 王光镇, 韩柳, 王周龙. 基于MODIS数据的典型草原非光合植被覆盖度估算[J]. 国土资源遥感, 2019, 31(3): 234-241.
Guoqi CHAI, Jingpu WANG, Guangzhen WANG, Liu HAN, Zhoulong WANG. Estimation of fractional cover of non-photosynthetic vegetation in typical steppe based on MODIS data. Remote Sensing for Land & Resources, 2019, 31(3): 234-241.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.03.29      或      https://www.gtzyyg.com/CN/Y2019/V31/I3/234
Fig.1  研究区及实测样地位置
NPVIs指数 R P
DFI 0.77 P<0.01
SWIR32 -0.72 P<0.01
NDTI 0.71 P<0.01
STI 0.69 P<0.01
NDI7 0.64 P<0.01
NDI5 0.43 P<0.05
NDSVI 0.37 P<0.05
Tab.1  NPVIs指数与fNPV实测值的相关性
NPVIs指数 回归方程 R2 P
DFI y=0.048 7x-0.188 3 0.57 P<0.01
SWIR32 y=-1.824 4x+1.841 3 0.50 P<0.01
NDTI y=2.808 8x+0.067 3 0.48 P<0.01
STI y=1.025 2x-0.904 8 0.46 P<0.01
NDI7 y=1.473x+0.445 8 0.42 P<0.01
Tab.2  NPVIs指数与fNPV之间的反演模型
NPVIs指数 R2 RMSE RE/%
DFI 0.63 0.098 7 26.73
SWIR32 0.54 0.110 2 29.83
NDTI 0.53 0.112 5 30.46
STI 0.50 0.115 6 31.29
NDI7 0.40 0.128 1 34.69
Tab.3  NPVIs指数反演fNPV模型精度评价结果
Fig.2  不同fNPV估算模型预测值与实测值散点图
Fig.3  研究区OLI-fNPV与MODIS-fNPV对比
Fig.4  研究区fNPV分布
fNPV 像元数/个 百分比/%
[0,0.2] 44 077 10.12
(0.2,0.4] 132 310 30.38
(0.4,0.6] 194 329 44.61
(0.6,0.8] 62 847 14.43
(0.8,1] 2 011 0.46
Tab.4  2017年9月30日各个fNPV等级所占百分比
[1] 任鸿瑞, 周广胜, 张峰 , 等. 基于纤维素吸收指数(CAI)的内蒙古荒漠草原非绿色生物量估算[J]. 科学通报, 2012,57(10):839-845.
doi: 10.1007/s11434-012-5016-3
Ren H R, Zhou G S, Zhang F , et al. Evaluating cellulose absorption index (CAI) for non-photosynthetic biomass estimation in the desert steppe of Inner Mongolia[J]. China Science Bulletin, 2012,57(10):839-845.
[2] Guerschman J P, Hill M J, Renzullo L J , et al. Estimating fractional cover of photosynthetic vegetation,non-photosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS sensors[J]. Remote Sensing of Environment, 2009,113(5):928-945.
[3] Daughtry C S T, Hunt E R, Doraiswamy P C , et al. Remote sensing the spatial distribution of crop residues[J]. Agronomy Journal, 2005,97(3):864-874.
[4] Daughtry C S T, Doraiswamy P C, Hunt E R , et al. Remote sensing of crop residue cover and soil tillage intensity[J]. Soil and Tillage Research, 2006,91(1-2):101-108.
[5] Daughtry C S T, Hunt E R, McMurtrey J E . Assessing crop residue cover using shortwave infrared reflectance[J]. Remote Sensing of Environment, 2004,90(1):126-134.
[6] Daughtry C S T . Discriminating crop residues from soil by shortwave infrared reflectance[J]. Agronomy Journal, 2001,93(1):125-131.
[7] Henry H A L, Brizgys K, Field C B . Litter decomposition in a California annual grassland:Interactions between photodegradation and litter layer thickness[J]. Ecosystems, 2008,11(4):545-554.
[8] Nagler P L, Inoue Y, Glenn E P , et al. Cellulose absorption index (CAI) to quantify mixed soil-plant litter scenes[J]. Remote Sensing of Environment, 2003,87(2-3):310-325.
[9] Elmore A J, Asner G P, Hughes R F . Satellite monitoring of vegetation phenology and fire fuel conditions in Hawaiian drylands[J]. Earth Interactions, 2005,9(21):1-21.
[10] Mcnairn H, Protz R . Mapping corn residue cover on agricultural fields in Oxford County,Ontario,using thematic mapper[J]. Canadian Journal of Remote Sensing, 1993,19(2):152-159.
[11] Cao X, Chen J, Matsushita B , et al. Developing a MODIS-based index to discriminate dead fuel from photosynthetic vegetation and soil background in the Asian steppe area[J]. International Journal of Remote Sensing, 2010,31(6):1589-1604.
[12] 李涛, 李晓松, 李飞 . 基于Hyperion的锡林郭勒草原光合植被、非光合植被覆盖度估算[J]. 生态学报, 2015,35(11):3643-3652.
doi: 10.5846/stxb201308142075
Li T, Li X S, Li F . Estimating fractional cover of photosynthetic vegetation and non-photosynthetic vegetation in the Xilingol steppe region with EO-1 Hyperion data[J]. Acta Ecologica Sinica, 2015,35(11):3643-3652.
[13] 姬翠翠, 贾永红, 李晓松 , 等. 线性/非线性光谱混合模型估算白刺灌丛植被覆盖度[J]. 遥感学报, 2016,20(6):1402-1412.
Ji C C, Jia Y H, Li X S , et al. Research on linear and nonlinear spectral mixture models for estimating vegetation fractional cover of nitraria bushes[J]. Journal of Remote Sensing, 2016,20(6):1402-1412.
[14] 李志婷, 王昌昆, 潘贤章 , 等. 基于模拟Landsat-8 OLI数据的小麦秸秆覆盖度估算[J]. 农业工程学报, 2016,32(s1):145-152.
Li Z T, Wang C K, Pan X Z , et al. Estimation of wheat residue cover using simulated Landsat-8 OLI datas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(s1):145-152.
[15] 王光镇, 王静璞, 邹学勇 , 等. 基于像元三分模型的锡林郭勒草原光合植被和非光合植被覆盖度估算[J]. 生态学报, 2017,37(17):5722-5731.
doi: 10.5846/stxb201606101111
Wang G Z, Wang J P, Zou X Y , et al. Estimation of fractional cover of photosynthetic and non-photosynthetic vegetation in the Xilingol steppe region using the NDVI-DFI model[J]. Acta Ecologica Sinica, 2017,37(17):5722-5731.
[16] Li X, Zheng G, Wang J , et al. Comparison of methods for estimating fractional cover of photosynthetic and non-photosynthetic vegetation in the Otindag Sandy Land using GF-1 wide-field view data[J]. Remote Sensing, 2016,8(10):800.
[17] 王光镇, 王静璞, 邹学勇 , 等. 遥感技术估算非光合植被覆盖度研究综述[J]. 遥感技术与应用, 2018,33(1):1-9.
Wang G Z, Wang J P, Zou X Y , et al. A review on estimating fractional cover of non-photosynthetic vegetation by using remote sensing[J]. Remote Sensing Technology and Application, 2018,33(1):1-9.
[18] 张淼, 李强子, 蒙继华 , 等. 作物残茬覆盖度遥感监测研究进展[J]. 光谱学与光谱分析, 2011,31(12):3200-3205.
Zhang M, Li Q Z, Meng J H , et al. Review of crop residue fractional cover monitoring with remote sensing[J]. Spectroscopy and Spectral Analysis, 2011,31(12):3200-3205.
[19] Jacques D C, Kergoat L, Hiernaux P , et al. Monitoring dry vegetation masses in semi-arid areas with MODIS SWIR bands[J]. Remote Sensing of Environment, 2014,153:40-49.
[20] van Deventer A P, Ward A D, Gowda P H , et al. Using thematic mapper data to identify contrasting soil plains and tillage practices[J]. Photogrammetric Engineering and Remote Sensing, 1997,63(1):87-93.
[21] Qi J, Marsett R, Heilman P , et al. RANGES improves satellite-based information and land cover assessments in southwest United States[J]. EOS Transactions American Geophysical Union, 2002,83(51):601-606.
[22] 刘春静, 张丽, 周宇 , 等. 中国新疆及中亚五国干旱区草地覆盖度反演与分析[J]. 草业科学, 2016,33(5):861-870.
doi: 10.11829/j.issn.1001-0629.2015-0503
Liu C J, Zhang L, Zhou Y , et al. Retrieval and analysis of grassland coverage in arid Xinjiang,China and five countries of Central Asia[J]. Pratacultural Science, 2016,33(5):861-870.
[23] 吴林, 张元明 . 以数码照相法估算生物土壤结皮盖度[J]. 中国沙漠, 2013,33(6):1810-1815.
doi: 10.7522/j.issn.1000-694X.2013.00269
Wu L, Zhang Y M . Coverage estimation on biological soil crusts based on digital photos[J]. Journal of Desert Research, 2013,33(6):1810-1815.
[24] 张浩彬, 李俊生, 向南平 , 等. 基于MODIS地表反射率数据的水体自动提取研究[J]. 遥感技术与应用, 2015,30(6):1160-1167.
doi: 10.11873/j.issn.1004-0323.2015.6.1160
Zhang H B, Li J S, Xiang N P , et al. A study of extracting water bodies automatically based on the MODIS surface reflectance data[J]. Remote Sensing Technology and Application, 2015,30(6):1160-1167.
[25] Serbin G , Daughtry C S T,Hunt E R ,et al. Effects of soil composition and mineralogy on remote sensing of crop residue cover[J]. Remote Sensing of Environment, 2009,113(1):224-238.
[26] 唐世浩, 朱启疆, 孙睿 . 基于方向反射率的大尺度叶面积指数反演算法及其验证[J]. 自然科学进展, 2006,16(3):331-337.
Tang S H, Zhu Q J, Sun R . The inversion algorithm and its validation of coarse scale leaf area index based on the direction of the reflectivity[J]. Progress in Natural Science, 2006,16(3):331-337.
[27] 孙晨曦, 刘良云, 关琳琳 , 等. 锡林浩特草原区域MODIS LAI产品真实性检验与误差分析[J]. 遥感学报, 2014,18(3):518-536.
doi: 10.11834/jrs.20143097
Sun C X, Liu L Y, Guan L L , et al. Validation and error analysis of the MODIS LAI product in Xilinhot grassland[J]. Journal of Remote Sensing, 2014,18(3):518-536.
[28] 于惠, 吴玉锋, 金毅 , 等. 基于MODIS SWIR数据的干旱区草地地上生物量反演及时空变化研究[J]. 遥感技术与应用, 2017,32(3):524-530.
Yu H, Wu Y F, Jin Y , et al. An approach for monitoring the aboveground biomass of grassland in arid areas based on MODIS SWIR bands[J]. Remote Sensing Technology and Application, 2017,32(3):524-530.
[29] Gelder B K, Kaleita A L, Cruse R M . Estimating mean field residue cover on midwestern soils using satellite imagery[J]. Agronomy Journal, 2009,101(3):635-643.
[30] Cao X, Cui X, Yue M , et al. Evaluation of wildfire propagation susceptibility in grasslands using burned areas and multivariate logistic regression[J]. International Journal of Remote Sensing, 2013,34(19):6679-6700.
[31] Ren H, Zhou G . Estimating senesced biomass of desert steppe in Inner Mongolia using field spectrometric data[J]. Agricultural and Forest Meteorology, 2012,161(4):66-71.
[32] 谢小燕, 刘咏梅, 李京忠 , 等. 黄土丘陵区林草地枯落层盖度遥感估算研究[J]. 光谱学与光谱分析, 2016,36(7):2217-2223.
Xie X Y, Liu Y M, Li J Z , et al. Remote sensing estimation of plant litter cover based on the spectra of plant litter-soil mixed scenes[J]. Spectroscopy and Spectral Analysis, 2016,36(7):2217-2223.
[1] 宋奇, 冯春晖, 马自强, 王楠, 纪文君, 彭杰. 基于1990—2019年Landsat影像的干旱区绿洲土地利用变化与模拟[J]. 自然资源遥感, 2022, 34(1): 198-209.
[2] 任超锋, 蒲禹池, 张福强. 顾及地理空间信息的无人机影像匹配像对提取方法[J]. 自然资源遥感, 2022, 34(1): 85-92.
[3] 臧丽日, 杨树文, 申顺发, 薛庆, 秦肖伟. 耦合分水岭与形态学的特殊纹理影像配准算法[J]. 自然资源遥感, 2022, 34(1): 76-84.
[4] 潘建平, 徐永杰, 李明明, 胡勇, 王春晓. 结合相关系数和特征分析的植被区域自动变化检测研发[J]. 自然资源遥感, 2022, 34(1): 67-75.
[5] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[6] 江娜, 陈超, 韩海丰. 海岸带地类统计模型中DEM空间尺度优选方法[J]. 自然资源遥感, 2022, 34(1): 34-42.
[7] 吴芳, 李瑜, 金鼎坚, 李天祺, 郭华, 张琦洁. 无人机三维地障信息提取技术应用于航空物探飞行轨迹规划[J]. 自然资源遥感, 2022, 34(1): 286-292.
[8] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[9] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[10] 姚金玺, 张志, 张焜. 基于GEE的诺木洪洪积扇植被时空变化特征、成因及趋势分析[J]. 自然资源遥感, 2022, 34(1): 249-256.
[11] 武艺杰, 孔雪松. 江苏省“生态-农业-建设”用地空间格局模拟及发展模式选择[J]. 自然资源遥感, 2022, 34(1): 238-248.
[12] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[13] 胡盈盈, 戴声佩, 罗红霞, 李海亮, 李茂芬, 郑倩, 禹萱, 李宁. 2001—2015年海南岛橡胶林物候时空变化特征分析[J]. 自然资源遥感, 2022, 34(1): 210-217.
[14] 孙一鸣, 张宝钢, 吴其重, 刘奥博, 高超, 牛静, 何平. 国产微景一号小卫星影像的城市裸地识别应用[J]. 自然资源遥感, 2022, 34(1): 189-197.
[15] 郑修诚, 周斌, 雷惠, 黄祺宇, 叶浩林. 基于GEE的杭州湾慈溪段潮滩提取及时空变化分析[J]. 自然资源遥感, 2022, 34(1): 18-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发