Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (2): 182-192    DOI: 10.6046/zrzyyg.2022153
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
天津市南部平原地面沉降区新兴风险评估
于海若1,2,3(), 宫辉力4,5,6,7,8,9(), 陈蓓蓓4,5,6,7,8,9, 周超凡4,5,6,7,8,9
1.山东工商学院公共管理学院,烟台 264005
2.自然资源部测绘科学与地球空间信息技术重点实验室,北京 100039
3.地理信息工程国家重点实验室,西安 710054
4.首都师范大学资源环境与旅游学院,北京 100048
5.首都师范大学资源环境与地理信息系统北京市重点实验室,北京 100048
6.首都师范大学城市环境过程与数字模拟国家重点实验室培育基地,北京 100048
7.首都师范大学三维信息获取与应用教育部重点实验室,北京 100048
8.首都师范大学地面沉降机理与防控教育部重点实验室,北京 100048
9.首都师范大学水资源安全北京实验室, 北京 100048
Emerging risk assessment of areas subject to land subsidence in the southern plain of Tianjin, China
YU Hairuo1,2,3(), GONG Huili4,5,6,7,8,9(), CHEN Beibei4,5,6,7,8,9, ZHOU Chaofan4,5,6,7,8,9
1. School of Public Administration, Shandong Technology and Business University,Yantai 264005, China
2. Key Laboratory of Surveying and Mapping Science and Geospatial Information Technology of MNR, CASM, Beijing 100039, China
3. State Key Laboratory of Geo-Information Engineering, Xi’an 710054, China
4. College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
5. The Key Lab of Resource Environment and GIS of Beijing, Capital Normal University, Beijing 100048, China
6. Base of the State Key Laboratory of Urban Environmental Process and Digital Modeling, Capital Normal University, Beijing 100048, China
7. Key Laboratory of 3D Information Acquisition and Application, MOE, Capital Normal University, Beijing 100048, China
8. Key Laboratory of Mechanism, Prevention and Mitigation of Land Subsidence, MOE, Capital Normal University, Beijing 100048, China
9. Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing 100048, China
全文: PDF(10550 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

新兴技术的发展在优化城市建设和改善人类生活的同时,也存在着一定的风险,进而引发城市安全问题。天津市是中国的沿海城市,其沿海海平面的不断上升,南水进津改变水循环,地下空间的开发利用,这些因素与地面沉降进行叠加耦合都将成为天津市新兴风险评价的重要因素。文章首先对天津市南部平原沉降信息进行获取,叠加海平面上升速率预测天津市自然海岸线后退情况。基于此,利用机器学习方法(XGBoost)预测天津市相对海平面上升带来的高风险因素。此外,针对南水北调-地下空间开发的应用带来的新兴风险进行分析,揭示南水进津和地铁建设运行对天津市城市安全的响应规律。这些地面沉降与现代人类活动结合带来的新兴风险分析研究将为区域防灾减灾提供科学依据,提高城市抵御灾害的能力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于海若
宫辉力
陈蓓蓓
周超凡
关键词 地面沉降新兴风险相对海平面上升XGBoost    
Abstract

The development of emerging technologies poses some risks while improving urban construction and human life, thus further causing urban safety problems. Tianjin is a coastal city in China, where the coastal sea level keeps increasing, water cycling is changed by the water supply of the South-to-North Water Diversion Project, and the underground space is subject to development and utilization. These factors, coupled with land subsidence, are all critical for the assessment of emerging risks in Tianjin. This study extracted information on the land subsidence of the southern plain in Tianjin and then predicted the retreat of the natural coastline in Tianjin by combining the sea level rise rate. Accordingly, this study predicted the high-risk factors brought by relative sea level rise in Tianjin using a machine learning method (XGBoost). In addition, this study analyzed the emerging risks caused by the South-to-North Water Diversion Project and the development and utilization of underground space and revealed the response patterns of the water supply and the construction and operation of subways to the urban safety of Tianjin. The study on the emerging risks brought about by the combination of land subsidence and modern human activities will provide a scientific basis for regional disaster prevention and mitigation and improve cities’ ability to resist disasters.

Key wordsland subsidence    emerging risk    relative sea level rise    XGBoost
收稿日期: 2022-04-18      出版日期: 2023-07-07
ZTFLH:  TP79  
  P237  
基金资助:国家自然科学基金重点项目“京津冀典型区地下空间演化与地面沉降响应机理研究”(41930109);国家自然科学基金面上项目“南水进京背景下地面沉降演化机理”(41771455);地理信息工程国家重点实验室和自然资源部测绘科学与地球空间信息技术重点实验室开放课题项目“天津沿海地区地面沉降与海平面上升叠加效应及其风险分析”(2021-02-09)
通讯作者: 宫辉力(1956-),男,博士生导师,主要从事地理信息系统和遥感的教学与应用研究。Email: gonghl_1956@126.com
作者简介: 于海若(1991-),女,讲师,主要从事地面沉降机理和应用研究。Email: yhr_cnu@163.com
引用本文:   
于海若, 宫辉力, 陈蓓蓓, 周超凡. 天津市南部平原地面沉降区新兴风险评估[J]. 自然资源遥感, 2023, 35(2): 182-192.
YU Hairuo, GONG Huili, CHEN Beibei, ZHOU Chaofan. Emerging risk assessment of areas subject to land subsidence in the southern plain of Tianjin, China. Remote Sensing for Natural Resources, 2023, 35(2): 182-192.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022153      或      https://www.gtzyyg.com/CN/Y2023/V35/I2/182
Fig.1  天津市地理位置与影像覆盖范围示意图
Fig.2  技术流程
Fig.3  2012—2018年天津累计沉降量
Fig.4  水准监测点与InSAR数据年均沉降量对比
Fig.5  Radarsat-2-A和Radarsat-2-B数据年均沉降量对比
Fig.6  叠加作用下的天津沿海淹没区
Fig.7  天津市南部平原区土地利用现状
Fig.8  XGBoost回归曲线
Fig.9  城市安全结果与地面沉降、第三承压含水层等值线结果叠加
Fig.10  城市安全影响因素的重要性排序
Fig.11  天津市南水北调水站水厂沉降
Fig.12  天津市南水北调水站水厂年沉降量折线图
Fig.13  天津市地铁线缓冲区年沉降量
[1] 于海若, 宫辉力, 陈蓓蓓, 等. 新水情下利用InSAR-GRACE卫星的新兴风险预警与城市地下空间安全展望[J]. 国土资源遥感, 2020, 32(4):16-22.doi:10.6046/gtzyyg.2020.04.03.
doi: 10.6046/gtzyyg.2020.04.03
Yu H R, Gong H L, Chen B B, et al. Emerging risks and the prospect of urban underground space security based on InSAR -GRACE satellite under the new hydrological background[J]. Remote Sensing for Land and Resources, 2020, 32(4):16-22.doi:10.6046/gtzyyg.2020.04.03.
doi: 10.6046/gtzyyg.2020.04.03
[2] 胡俊杰, 蒙爱军. 天津地区的相对海平面上升与地面沉降[J]. 海洋信息, 2005(2):17-19,7.
Hu J J, Meng A J. Relative sea level rise and land subsidence in Tianjin[J]. Ocean Information, 2005(2):17-19,7.
[3] 吕传振, 刘凯旋. 天津地区地铁沿线地面沉降特征分析[J]. 北京测绘, 2020, 34(9):3.
Lyu C Z, Liu K X. Analysis of land subsidence characteristics along subway in Tianjin[J]. Beijing Surveying and Mapping, 2020, 34 (9):3.
[4] Cole G. A discussion on problems associated with the subsidence of southeastern England:The east coast and London tidal flood warning systems[J]. Philosophical Transactions of the Royal Society of London, 1972, 272(1221):173-178.
[5] Mazzotti S, Lambert A, Kooij M V D. Impact of anthropogenic subsidence on relative sea-level rise in the Fraser River delta[J]. Geology, 2009, 37(9):771-774.
doi: 10.1130/G25640A.1
[6] Mazzotti S, Lambert T, Kooij M V D. Coastal subsidence and relative sea-level rise in the Fraser River delta,Greater Vancouver,BC,from a combined CTM-InSAR,GPS,leveling,and tide gauge analysis[C]// AGU Fall Meeting Abstracts, 2008.
[7] Esra E, Cristian R. The worsening impacts of land reclamation assessed with Sentinel-1:The Rize (Turkey) test case[J]. International Journal of Applied Earth Observation and Geoinformation, 2006(74):57-64.
[8] Miller K G, Sugarman P J, Browning J V. Sea-level rise in New Jersey over the past 5000 years:Implications to anthropogenic changes[J]. Global and Planetary Change, 2009, 66(1-2):10-18.
doi: 10.1016/j.gloplacha.2008.03.008
[9] Sannekevan A, Gilles E, Esther S, et al. The relative contribution of peat compaction and oxidation to subsidence in built-up areas in the Rhine-Meuse delta,the Netherlands[J]. Science of the Total Environment, 2018(636):177-191.
[10] Sun H, Grandstaff D, Shagam R. Land subsidence due to groundwater withdrawal:Potential damage of subsidence and sea level rise in southern New Jersey[J]. USA.Environmental Geology, 1999, 37(4):290-296.
[11] Abidin H Z, Andreas H, Gamal M. Land subsidence characteristics of the Jakarta basin (Indonesia) and its relation with groundwater extraction and sea level rise[J]. Groundwater Response to Changing Climate, 2010(1):113-130.
[12] Abidin H Z, Andreas H, Gumilar I. Land subsidence of Jakarta (Indonesia) and its relation with urban development[J]. Natural Hazards, 2011, 59(3):1753-1771.
doi: 10.1007/s11069-011-9866-9
[13] Abidin H Z, Andreas H, Gumilar I. On correlation between urban development,land subsidence and flooding phenomena in Jakarta[J]. IAHS-AISH Proceedings and Reports, 2015, 370:15-20.
[14] 李响, 段晓峰, 张增健, 等. 中国沿海地区海平面上升脆弱性区划[J]. 灾害学, 2016, 31(4):103-109.
Li X, Duan X F, Zhang Z J, et al. Vulnerability zoning of sea level rise in coastal areas of China[J]. Disaster Science, 2016, 31 (4):103-109.
[15] 谢翠娜, 许世远, 胡蓓蓓, 等. 地面沉降对天津滨海地区风暴潮灾危险性影响评价. 世界地理研究, 2009, 18(4):126-133.
Xie C N, Xu S Y, Hu B B, et al. Assessment of land subsidence influence on storm surge risk in Tianjin Binhai area[J]. World Regional Studies, 2009, 18 (4):126-133.
[16] 张永红, 丁炜, 何静, 等. 基于XGBoost的雅江流域孕灾环境危险性分析[J]. 长江科学院院报, 2021, 3(9):1-10.
Zhang Y H, Ding W, He J, et al. Risk analysis of hazard-pregnant environment in Brahmaputra based on XGBoost[J]. Journal of Yangtze River Scientific Research Institute, 2021, 3(9):1-10.
[17] 宫思艺, 孔宪光, 刘丹, 等. 融入复杂地层动态识别的盾构施工地表沉降预测方法研究[J]. 仪器仪表学报, 2019, 40(6):228-236.
Gong S Y, Kong X G, Liu D, et al. An approach for predicting shield construction ground surface settlement of complex stratum using dynamical strata identification[J]. Chinese Journal of Scientific Instrument, 2019, 40(6):228-236.
[18] 林报嘉, 刘晓东, 杨川, 等. XGBoost机器学习模型与GIS技术结合的公路崩塌灾害易发性研究[J]. 公路, 2020, 65(7):20-26.
Lin B J, Liu X D, Yang C, et al. Avalanche susceptibility assessment of highway based on XGBoost machine learning model and GIS technology[J]. Highway, 2020, 65(7):20-26.
[19] Zhao T A, Zheng S H, Li W L, et al. A study of the credit risk analysis based on XGBoost[J]. Software Engineering, 2018, 21(6):29-32.
[20] Guo L, Gong H L, Zhu F. Analysis of the spatiotemporal variation in land subsidence on the Beijing plain,China[J]. Remote Sensing, 2019, 11(10):1170.
doi: 10.3390/rs11101170
[21] 郭良迁, 薄万举, 陈宇坤, 等. 天津地区的垂直形变与构造活动研究[J]. 大地测量与地球动力学, 2009, 29(5):1-5.
Guo L Q, Bo W J, Chen Y K, et al. Vertical deformation and tectonic activity in Tianjin area[J]. Journal of Geodesy and Geodynamics, 2009, 29 (5):1-5.
[22] 白泽朝, 靳国旺, 张红敏, 等. 天津地区Sentinel-1A雷达影像PS-InSAR地面沉降监测[J]. 测绘科学技术学报, 2017, 34(3):6.
Bai Z C, Jin G W, Zhang H M, et al. Subsidence monitoring of Tianjin using PS-InSAR technique with Sentinel-1A[J]. Journal of Geomatics Science and Technology, 2017, 34(3):6.
[23] 邵继彭. 扩大天津东部防潮防线范围完善防潮体系探讨[J]. 海河水利, 2019(1):18-19,29.
Shao J P. Discussion on expanding the scope of dampproof defense line in the east of Tianjin and perfecting the dampproof system[J]. Haihe Water Conservancy, 2019(1):18-19,29.
[24] 王威, 王淼, 韦劲松, 等. 南水北调中线工程与天津地面沉降防治关系研究[J]. 南水北调与水利科技, 2012, 10(3):22-26.
Wang W, Wang M, Wei J S, et al. Relationship between the middle route of South-to-North Water Diversion Project and land subsidence control in Tianjin[J]. South-to-North Water Diversion and Water Science and Technology, 2012, 10(3):22-26.
[1] 高晨, 马栋, 屈曼, 钱建国, 尹海权, 侯晓真. 基于PS-InSAR的怀来地震台钻孔体应变异常机理研究[J]. 自然资源遥感, 2023, 35(3): 153-159.
[2] 虎小强, 杨树文, 闫恒, 薛庆, 张乃心. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023, 35(1): 171-179.
[3] 田晨, 张金龙, 金义蓉, 董世元, 王彬, 张乃祥. 一种利用贝叶斯优化的蓝藻遥感分类方法[J]. 自然资源遥感, 2023, 35(1): 49-56.
[4] 于文, 宫辉力, 陈蓓蓓, 周超凡. 北京东部平原区地面沉降时空演化特征及预测[J]. 自然资源遥感, 2022, 34(4): 183-193.
[5] 周超凡, 宫辉力, 陈蓓蓓, 雷坤超, 施轹原, 赵宇. 联合WT-RF的津保高铁沿线地面沉降预测[J]. 自然资源遥感, 2021, 33(4): 34-42.
[6] 史珉, 宫辉力, 陈蓓蓓, 高明亮, 张舜康. Sentinel-1A京津冀平原区2016—2018年地面沉降InSAR监测[J]. 自然资源遥感, 2021, 33(4): 55-63.
[7] 于海若, 宫辉力, 陈蓓蓓, 周超凡. 新水情下利用InSAR-GRACE卫星的新兴风险预警与城市地下空间安全展望[J]. 国土资源遥感, 2020, 32(4): 16-22.
[8] 汪宝存, 朱琳, 潘登, 郭凌飞, 彭鹏. 郑州市地面沉降时空演变规律研究[J]. 国土资源遥感, 2020, 32(3): 143-148.
[9] 朱茂, 沈体雁, 黄松, 白书建, 葛春青, 胡琼. InSAR技术地铁沿线建筑物形变监测[J]. 国土资源遥感, 2019, 31(2): 196-203.
[10] 张晓婧, 陈蓓蓓, 雷坤超, 陈文锋, 高明亮, 周超凡, 段光耀. 京津高铁沿线地面沉降特征(北京段)[J]. 国土资源遥感, 2019, 31(1): 171-179.
[11] 张晓博, 赵学胜, 葛大庆, 刘斌, 张玲, 李曼, 王艳. 基于Sentinel TOPS模式Stacking技术监测淮南矿区沉降[J]. 国土资源遥感, 2018, 30(4): 200-205.
[12] 范景辉, 王如意, 赵红丽, 李雁明, 林昊, 燕云鹏. 地面沉降光栅立体图研究制作[J]. 国土资源遥感, 2018, 30(4): 102-107.
[13] 陈继伟, 曾琪明, 焦健, 赵斌臣. Sentinel-1A卫星TOPS模式数据的SBAS时序分析方法——以黄河三角洲地区为例[J]. 国土资源遥感, 2017, 29(4): 82-87.
[14] 李曼, 葛大庆, 张玲, 刘斌, 郭小方, 王艳. 基于PSInSAR技术的曹妃甸新区地面沉降发育特征及其影响因素分析[J]. 国土资源遥感, 2016, 28(4): 119-126.
[15] 孙晓鹏, 鲁小丫, 文学虎, 甄艳, 王蕾. 基于SBAS-InSAR的成都平原地面沉降监测[J]. 国土资源遥感, 2016, 28(3): 123-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发