Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (4): 183-193    DOI: 10.6046/zrzyyg.2021390
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
北京东部平原区地面沉降时空演化特征及预测
于文1,2,3,4(), 宫辉力1,2,3,4(), 陈蓓蓓1,2,3,4, 周超凡1,2,3,4
1.首都师范大学水资源安全北京实验室,北京 100048
2.首都师范大学地面沉降机理与防控教育部重点实验室,北京 100048
3.首都师范大学城市环境过程与数字模拟国家重点实验室培育基地,北京 100048
4.首都师范大学京津冀平原地下水与地面沉降国家野外科学观测研究站,北京 100048
Spatial-temporal evolution characteristics and prediction of land subsidence in the eastern plain of Beijing
YU Wen1,2,3,4(), GONG Huili1,2,3,4(), CHEN Beibei1,2,3,4, ZHOU Chaofan1,2,3,4
1. Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing 100048, China
2. Key Laboratory of Land Subsidence Mechanism and Control, Ministry of Education, Capital Normal University, Beijing 100048, China
3. Base of the State Key Laboratory of Urban Environmental Process and Digital Modeling, Capital Normal University, Beijing 100048, China
4. National Field Scientific Observation and Research Station of Groundwater and Land Subsidence in the Beijing-Tianjin-Hebei Plain, Capital Normal University, Beijing 100048, China
全文: PDF(8559 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

地面沉降是地表高程下降的一种自然地质现象,若发生在人口密集、社会发展程度较高的城市,将对城市基础设施具有严重的破坏性,威胁着城市安全。地面沉降演化特征分析可以反映其对地面基础设施的影响程度,建立一个高效的地面沉降预测模型对于地面沉降的防治和保障城市安全有着重要意义。首先,利用永久散射体合成孔径雷达干涉测量方法(persistent scatterer interferometric synthetic aperture Radar,PS-InSAR)获取到地面沉降时空信息,且与水准验证得到较高的精度。其次,利用经验正交函数对地面沉降场整体时空特性进行分析,发现研究区域空间模态1方差贡献率很大,几乎代表研究区域空间的整体演化情况,对应时间系数线性趋势显著; 模态2有一定的方差贡献率,但占比很小,对应的时间系数季节性显著。最后,分别利用长短期记忆(long short term memory,LSTM)与嵌入注意机制的长短期记忆(Attention-LSTM)模型对区域地面沉降进行时序预测,发现Attention-LSTM模型优于LSTM模型,其均方误差损失函数(mean square error loss,MSE-loss)可低至0.01。该预测方法扩大了深度学习在地面沉降研究方面的应用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于文
宫辉力
陈蓓蓓
周超凡
关键词 地面沉降经验正交函数演化特征Attention-LSTM时序预测    
Abstract

Land subsidence is a natural geological phenomenon in which the surface elevation drops. It can severely destroy urban infrastructure and threaten urban safety if it occurs in densely populated cities with a high social development degree. The analysis of the evolution characteristics of land subsidence can reflect the degree of the influence of land subsidence on the ground infrastructures, and building an efficient land subsidence prediction model is of great significance for preventing and controlling land subsidence and protecting urban safety. This study obtained the spatial-temporal information on land subsidence using the persistent scatterer interferometric synthetic aperture Radar (PS-InSAR) method first and then verified the information using leveling to get high precision. Then, this study analyzed the general spatial-temporal characteristics of the land subsidence field using an empirical orthogonal function. The analysis results are as follows. Spatial modal No. 1 had a high variance contribution rate, almost representing the general spatial evolution of the study area. Its corresponding time coefficient showed a significant linear trend. By contrast, spatial mode No. 2 had a low variance contribution rate and a seasonally significant time coefficient. Finally, the time series of the regional land subsidence were predicted using both long short-term memory (LSTM) and Attention-LSTM models. The prediction results indicate that the Attention-LSTM model was superior to the LSTM model, with the mean square error loss (MSE-loss) of as low as 0.01. This prediction method expands the application of deep learning in the study of land subsidence.

Key wordsland subsidence    empirical orthogonal function    evolution characteristics    Attention-LSTM    time series prediction
收稿日期: 2021-11-16      出版日期: 2022-12-27
ZTFLH:  TP79  
基金资助:国家自然科学基金重点项目“京津冀典型区地下空间演化与地面沉降响应机理研究”(41930109/D010702);国家自然科学基金面上项目“南水进京背景下地面沉降演化机理”(41771455/D010702);北京市自然基金面上项目“京津高铁差异性沉降区段桩-土变形耦合机制研究”(8212042);北京卓越青年科学家项目(BJJWZYJH01201910028032);北京市优秀人才青年拔尖个人项目共同资助。
通讯作者: 宫辉力(1956-),男,博士生导师,研究方向为水文与水资源。Email: gonghl@cnu.edu.cn
作者简介: 于 文(1992-),女,博士研究生,研究方向为区域地面沉降。Email: yuwen_1121@126.com
引用本文:   
于文, 宫辉力, 陈蓓蓓, 周超凡. 北京东部平原区地面沉降时空演化特征及预测[J]. 自然资源遥感, 2022, 34(4): 183-193.
YU Wen, GONG Huili, CHEN Beibei, ZHOU Chaofan. Spatial-temporal evolution characteristics and prediction of land subsidence in the eastern plain of Beijing. Remote Sensing for Natural Resources, 2022, 34(4): 183-193.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021390      或      https://www.gtzyyg.com/CN/Y2022/V34/I4/183
Fig.1  研究区概况
雷达影像参数 RADARSAT-2 Sentinel-1
轨道方向 降轨 升轨
空间分辨率/m 30 5×20
波段 C波段 C波段
极化方式 VV VV
波长/cm 5.6 5.6
重访周期/d 25 12
影像数量/景 48 61
Tab.1  S1A雷达影像信息情况
Fig.2  LSTM单元结构示意图
Fig.3  Attention-LSTM的地面沉降预测框架
Fig.4  研究区累计沉降量
Fig.5  研究区时序年沉降量
Fig.6  InSAR结果与水准结果验证
Fig.7  2011—2018年北京东部平原典型沉降区年尺度沉降的特征向量分布及对应时间系数
Fig.8  2012—2014年北京东部平原典型沉降区月尺度沉降特征向量分布及对应时间系数
Fig.9  2016—2018年北京东部平原典型沉降区月尺度沉降的特征向量分布及对应时间系数
Fig.10  预测模型损失函数
Fig.11  LSTM与Attention-LSTM的区域沉降预测结果
Fig.12  研究区所选剖面真实值与预测值的对比
[1] 周飞飞. 《全国地面沉降防治规划(2011—2020年)》解读——访国土资源部地质环境司副司长陶庆法[J]. 中国应急管理, 2012(3):58-61.
Zhou F F. Interpretation of the national plan for land subsidence prevention and control (2011—2020):Interview with Tao Qingfa,deputy director of the department of geological environment,Ministry of Land and Resources[J]. China Emergency Management, 2012(3):58-61.
[2] 叶晓宾. 华北平原地面沉降经济损失评估[M]. 北京: 中国大地出版社, 2006.
Ye X B. Evaluation of economic loss of land subsidence in the North China Plain[M]. Beijing: China Land Publishing House, 2006.
[3] 刘国祥. InSAR系列讲座6 InSAR应用实例及其局限性分析[J]. 四川测绘, 2005, 28(3):139-143.
Liu G X. Application examples of InSAR and its limitation analysis[J]. Surveying and Mapping of Sichuan, 2005, 28(3):139-143.
[4] Zebker H A, Goldstein R M. Topographic mapping from interferometric synthetic aperture Radar observations[J]. Journal of Geophysical Research Solid Earth, 1986, 91(b5):4993-4999.
[5] Massonnet D, Rossi M, Carmona C, et al. The displacement field of the Landers earthquake mapped by Radar interferometry[J]. Nature, 1993, 364(6433):138-142.
doi: 10.1038/364138a0
[6] 宫辉力, 张有全, 李小娟. 基于永久散射体雷达干涉测量技术的北京市地面沉降研究[J]. 自然科学进展, 2009, 19(11):1261-1266.
Gong H L, Zhang Y Q, Li X J. Beijing land subsidence research based on permanent scatterer Radar interferometry technology[J]. Advances in Natural Science, 2009, 19(11):1261-1266.
[7] Gabriel A K, Goldstein R M, Zebker H A. Mapping small elevation changes over large areas:Differential Radar interferometry[J]. Journal of Geophysical Research:Solid Earth, 1989, 94(b7):9183-9191.
[8] Hanssen R F. Radar interferometry[M]. Springer Netherlands, 2001.
[9] Ghiglia D C, Pritt M D. Two-dimensional phase unwrapping[M]. Wiley-Interscience, 1985.
[10] Zebker H A, Rosen P A, Hensley S. Atmospheric effects in interfero-metric synthetic aperture Radar surface deformation and topographic maps[J]. Journal of Geophysical Research Solid Earth, 1997, 102(b4):7547-7563.
[11] Ferretti A, Prati C. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212.
doi: 10.1109/36.868878
[12] 周超凡, 宫辉力, 陈蓓蓓, 等. 北京市典型地区地面沉降空间格局分析[J]. 遥感信息, 2017, 32(4):24-29.
Zhou C F, Gong H L, Chen B B, et al. Spatial pattern of land subsidence in Beijing typical areas[J]. Remote Sensing Information, 2017, 32(4):24-29.
[13] Zuo J J, Gong H L, Chen B B, et al. Time-series evolution patterns of land subsidence in the Eastern Beijing Plain,China[J]. Remote Sensing, 2019, 11(5): 539.
doi: 10.3390/rs11050539
[14] 杨翠玉, 王彦兵, 赵亚丽, 等. 北京来广营地区地面沉降时空演化特征[J]. 遥感信息, 2020, 35(5):138-143.
Yang C Y, Wang Y B, Zhao Y L, et al. Temporal and spatial characteristics of land subsidence in Laiguangying,Beijing[J]. Remote Sensing Information, 2020, 35(5):138-143.
[15] Zhou Q H, Hu Q W, Ai M Y, et al. An improved GM (1,3) model combining terrain factors and neural network error correction for urban land subsidence prediction[J]. Geomatics Natural Hazards and Risk, 2020, 11:212-229.
doi: 10.1080/19475705.2020.1716860
[16] Nie L, Wang H, Xu Y, et al. A new prediction model for mining subsidence deformation:The arc tangent function model[J]. Natural Hazards, 2015, 75(3):2185-2198.
doi: 10.1007/s11069-014-1421-z
[17] 杨天亮, 许言. 国际地面沉降与城市安全研究动态——第一届国际城市地质学术研讨会综述[J]. 上海国土资源, 2017, 38(2):1-3.
Yang T L, Xu Y. Research trends in international land subsidence and urban security:An overview of the first international symposium on urban geology[J]. Shanghai Land and Resources, 2017, 38(2):1-3.
[18] Deng Z, Ke Y, Gong H, et al. Land subsidence prediction in Beijing based on PS-InSAR technique and improved Grey-Markov model[J]. Giscience and Remote Sensing, 2017, 54(6):1-22.
doi: 10.1080/15481603.2016.1245822
[19] 刘青豪, 张永红, 邓敏, 等. 大范围地表沉降时序深度学习预测法[J]. 测绘学报, 2021, 50(3):396-404.
Liu Q H, Zhang Y H, Deng M, et al. Time series prediction method of large-scale surface subsidence based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(3):396-404.
[20] 岳振华, 沈涛, 毛曦, 等. 循环神经网络的地面沉降预测方法[J]. 测绘科学, 2020, 45(12):149-156.
Yue Z H, Shen T, Mao X, et al. Ground subsidence prediction method based on recurrent neural network[J]. Science of Surveying and Mapping, 2020, 45(12):149-156.
[21] 刘予. 北京市地面沉降区含水层和压缩层组划分及地面沉降自动监测系统[D]. 长春: 吉林大学, 2004.
Liu Y. Divided water-bearing zones and compressible zones of Beijing land subsidence area and land subsidence automatic monitoring system[D]. Changchun: Jilin University, 2004.
[22] 周毅, 罗郧, 郭高轩, 等. 冲洪积平原地面沉降特征及主控因素——以北京平原为例[J]. 地质通报, 2016, 35(12):2100-2110.
Zhou Y, Luo Y, Guo G X, et al. A study of the characteristics of land subsidence and the main control factors in the alluvial plain:A case study of Beijing Plain[J]. Geological Bulletin of China, 2016, 35(12):2100-2110.
[23] 程凌鹏, 王新惠, 张琦伟, 等. 南水进京对北京地面沉降的影响及趋势分析[J]. 人民黄河, 2018, 40(5):93-97.
Cheng L P, Wang X H, Zhang Q W, et al. Influence of transferring Yangtze River water into Beijing on ground subsidence and trend analysis[J]. Yellow River, 2018, 40(5):93-97.
[24] 刘媛媛. 基于多源SAR数据的时间序列InSAR地表形变监测研究[D]. 西安: 长安大学, 2014.
Liu Y Y. Research on time series InSAR surface deformation monitoring based on multi-source SAR Data[D]. Xi’an: Chang’an University, 2014.
[25] Lorenz E N. Empirical orthogonal functions and statistical weather prediction[M]. Cambridge: Massachusetts Institute of Technology, Department of Meteorology, 1956:1,52.
[26] Asoka A, Gleeson T, Wada Y, et al. Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India[J]. Nature Geoscience, 2017, 10(2):109-117.
doi: 10.1038/ngeo2869
[27] Smith T M, Reynolds R W, Livezey R E, et al. Reconstruction of historical sea surface temperatures using empirical orthogonal functions[J]. Journal of Climate, 1996, 9(6):1403-1420.
doi: 10.1175/1520-0442(1996)009<1403:ROHSST>2.0.CO;2
[28] Bianchi F M, Maiorino E, Kampffmeyer M C, et al. Recurrent neural networks for short-term load forecasting:An overview and comparative analysis[EB/OL].(2017-05-11) [2018-07-20] https://arxiv.org/pdf/1705.04378.pdf .
[1] 高晨, 马栋, 屈曼, 钱建国, 尹海权, 侯晓真. 基于PS-InSAR的怀来地震台钻孔体应变异常机理研究[J]. 自然资源遥感, 2023, 35(3): 153-159.
[2] 于海若, 宫辉力, 陈蓓蓓, 周超凡. 天津市南部平原地面沉降区新兴风险评估[J]. 自然资源遥感, 2023, 35(2): 182-192.
[3] 虎小强, 杨树文, 闫恒, 薛庆, 张乃心. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023, 35(1): 171-179.
[4] 周超凡, 宫辉力, 陈蓓蓓, 雷坤超, 施轹原, 赵宇. 联合WT-RF的津保高铁沿线地面沉降预测[J]. 自然资源遥感, 2021, 33(4): 34-42.
[5] 史珉, 宫辉力, 陈蓓蓓, 高明亮, 张舜康. Sentinel-1A京津冀平原区2016—2018年地面沉降InSAR监测[J]. 自然资源遥感, 2021, 33(4): 55-63.
[6] 周芳成, 唐世浩, 韩秀珍, 宋小宁, 曹广真. 云下遥感地表温度重构方法研究[J]. 国土资源遥感, 2021, 33(1): 78-85.
[7] 于海若, 宫辉力, 陈蓓蓓, 周超凡. 新水情下利用InSAR-GRACE卫星的新兴风险预警与城市地下空间安全展望[J]. 国土资源遥感, 2020, 32(4): 16-22.
[8] 汪宝存, 朱琳, 潘登, 郭凌飞, 彭鹏. 郑州市地面沉降时空演变规律研究[J]. 国土资源遥感, 2020, 32(3): 143-148.
[9] 朱茂, 沈体雁, 黄松, 白书建, 葛春青, 胡琼. InSAR技术地铁沿线建筑物形变监测[J]. 国土资源遥感, 2019, 31(2): 196-203.
[10] 张晓婧, 陈蓓蓓, 雷坤超, 陈文锋, 高明亮, 周超凡, 段光耀. 京津高铁沿线地面沉降特征(北京段)[J]. 国土资源遥感, 2019, 31(1): 171-179.
[11] 张晓博, 赵学胜, 葛大庆, 刘斌, 张玲, 李曼, 王艳. 基于Sentinel TOPS模式Stacking技术监测淮南矿区沉降[J]. 国土资源遥感, 2018, 30(4): 200-205.
[12] 范景辉, 王如意, 赵红丽, 李雁明, 林昊, 燕云鹏. 地面沉降光栅立体图研究制作[J]. 国土资源遥感, 2018, 30(4): 102-107.
[13] 陈继伟, 曾琪明, 焦健, 赵斌臣. Sentinel-1A卫星TOPS模式数据的SBAS时序分析方法——以黄河三角洲地区为例[J]. 国土资源遥感, 2017, 29(4): 82-87.
[14] 李曼, 葛大庆, 张玲, 刘斌, 郭小方, 王艳. 基于PSInSAR技术的曹妃甸新区地面沉降发育特征及其影响因素分析[J]. 国土资源遥感, 2016, 28(4): 119-126.
[15] 孙晓鹏, 鲁小丫, 文学虎, 甄艳, 王蕾. 基于SBAS-InSAR的成都平原地面沉降监测[J]. 国土资源遥感, 2016, 28(3): 123-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发