Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (4): 201-213    DOI: 10.6046/zrzyyg.2022274
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于多模型的县域土地利用/土地覆盖模拟
何苏玲1,2,3(), 贺增红1,2,3, 潘继亚1,2,3, 王金亮1,2,3()
1.云南师范大学地理学部,昆明 650500
2.云南省高校资源与环境遥感重点实验室,昆明 650500
3.云南省地理空间信息工程技术研究中心,昆明 650500
County-scale land use/land cover simulation based on multiple models
HE Suling1,2,3(), HE Zenghong1,2,3, PAN Jiya1,2,3, WANG Jinliang1,2,3()
1. Faculty of Geography, Yunnan Normal University, Kunming 650500, China
2. Key Laboratory of Resources and Environmental Remote Sensing for Universities in Yunnan, Kunming 650500, China
3. Center for Geospatial Information Engineering and Technology of Yunnan Province, Kunming 650500, China
全文: PDF(9513 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

土地利用/土地覆盖(land use/land cover,LULC)模拟是土地变化研究的重要一环。基于谷歌地球引擎(Google Earth Engine,GEE)平台提取禄劝县1991—2021年高精度的LULC信息,分析其时空演变特征; 利用随机森林模型探究LULC变化的驱动因素; 对比元胞自动机-马尔科夫模型(cellular automata-Markov, CA-Markov)、土地变化模型(land change modeler,LCM)、未来土地利用模拟模型(future land use simulation,FLUS)和斑块生成土地利用模拟模型(patch-generating land use simulation,PLUS)4种模型在禄劝县的模拟效果; 根据模拟效果最好的模型预测禄劝县2027年的LULC状况。结果表明: ①1991— 2021年,禄劝县LULC空间格局以林地、草地和耕地为主; 耕地和水体分别波动增加89.26 km2和27.72 km2,林地、建设用地和裸地面积分别持续增加724.25 km2,21.08 km2和13.67 km2,草地面积以年均29.20 km2的速度波动减少。②禄劝县LULC变化主要受到地形条件(高程和坡度)的影响。③4种LULC模型的模拟效果排行为PLUS>FLUS>CA-Markov>LCM,其Kappa系数分别为0.63,0.58,0.46和0.35,总体精度分别为0.78,0.75,0.66和0.58。④禄劝县2027年的LULC空间格局与2021年相似,2021—2027年,耕地、草地和水体的面积分别以40.21 km2/a,4.51 km2/a和0.70 km2/a的速率减少,而林地、建设用地和裸地分别向外扩张265.52 km2,4.85 km2和2.08 km2

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何苏玲
贺增红
潘继亚
王金亮
关键词 土地利用/土地覆盖随机森林多模型禄劝县    
Abstract

Land use/land cover (LULC) simulation is essential for research on changes in land use. Based on the Google Earth Engine (GEE) platform, this study extracted the high-precision LULC information of Luquan County from 1991 to 2021 and analyzed the spatio-temporal evolution pattern. Then, this study analyzed the factors driving LULC changes using a random forest model and compared the simulation results of Luquan County obtained using the cellular automata-Markov (CA-Markov), land change modeler (LCM), future land use simulation (FLUS), and patch-generating land use simulation (PLUS). Finally, this study forecast the LULC change scenario in Luquan County in 2027 using the optimal model. The results show that: ① From 1991 to 2021, the spatial LULC pattern of Luquan County was dominated by forestland, grassland, and farmland. The areas of farmland and waterbodies increased by 89.26 km2 and 27.72 km2, respectively, the areas of forestland, construction land, and bare land increased continuously by 724.25 km2, 21.08 km2, and 13.67 km2, respectively, and the grassland decreased at an annual average rate of 29.20 km2; ② The LULC in Luquan County was primarily influenced by topographic conditions (elevation and slope); ③ The simulation effects of the four LULC models were in the order of PLUS > FLUS > CA-Markov > LCM, with Kappa coefficient of 0.63, 0.58, 0.46 and 0.35, respectively and the overall accuracy of 0.78, 0.75, 0.66 and 0.58, respectively; ④ The spatial LULC pattern in Luquan County in 2027 will share similarities with that in 2021. From 2021 to 2027, the areas of farmland land, grassland, and water bodies will decrease at a rate of 40.21 km2/a, 4.51 km2/a, and 0.70 km2/a, respectively, while the forestland, construction land, and bare land will expand by 265.52 km2, 4.85 km2, and 2.08 km2, respectively.

Key wordsLULC    random forest    multi-model    Luquan County
收稿日期: 2022-07-05      出版日期: 2023-12-21
ZTFLH:  P94  
基金资助:国家重点研发计划政府间/港澳台重点专项项目“利用地理空间技术监测和评估土地利用/土地覆被变化对区域生态安全的影响”(2018YFE0184300);国家自然科学基金项目“滇中地区生态安全评价与预警研究”(41561048);云南师范大学研究生科研创新基金项目“利用遥感和GIS技术实现滇中地区生态安全评估与多情景模拟”(YJSJJ22-B101);云南省高校科技创新团队
通讯作者: 王金亮(1963-),男,博士,教授,研究方向为资源环境与遥感应用。E-mail: jlwang@ynnu.edu.cn
作者简介: 何苏玲(1996-),女,硕士研究生,研究方向为资源环境遥感应用。E-mail: 1657302861@qq.com
引用本文:   
何苏玲, 贺增红, 潘继亚, 王金亮. 基于多模型的县域土地利用/土地覆盖模拟[J]. 自然资源遥感, 2023, 35(4): 201-213.
HE Suling, HE Zenghong, PAN Jiya, WANG Jinliang. County-scale land use/land cover simulation based on multiple models. Remote Sensing for Natural Resources, 2023, 35(4): 201-213.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022274      或      https://www.gtzyyg.com/CN/Y2023/V35/I4/201
Fig.1  研究区位置图
Fig.2  不同LULC产品的对比
Fig.3  LULC变化驱动因子
土地类型 耕地 林地 草地 水体 建设用地 裸地
耕地 1 1 1 1 1 1
林地 1 1 0 0 1 1
草地 1 1 1 1 1 1
水体 0 1 1 1 0 1
建设用地 1 1 1 1 1 1
裸地 0 1 1 1 0 1
Tab.1  不同地类之间的转移规则
景观指数 公式 指标描述与意义
聚集度(AI) A I = g i j m a x g i j 式中gij为景观类型的相似邻接斑块数目。AI反映景观要素斑块的聚集程度,值越大,景观破碎度越低
平均斑块面积(AREA_MN) A R E A _ M N = A N 式中A为景观总面积; N为所有斑块数量。AREA_MN为反映景观结构的有效指标,值越大,景观破碎度越低
蔓延度(CONTAG) C O N T A G = 1 + i = 1 n j = 1 n p i f i j i = 1 n f i j l n p i f i j i = 1 n f i j 2 l n n × 100 式中pi为第i类斑块所占的面积百分比; fij为第i类和第j类斑块毗邻的数量; n为斑块总数。CONTAG反映景观斑块类型的团聚程度或延展趋势,值越大,景观破碎度越低
边缘密度(ED) E D = i n E i A × 10 - 6 式中Ei为第i类斑块边界总长度。ED越大,景观破碎度越高
景观形状指数(LSI) L S I = 0.25 i n e j i * A 式中 e i j *为景观斑块类型ji之间的边缘总长度。LSI反映景观斑块要素的形状。LSI越大,景观破碎度越高
斑块密度(PD) P D = i n N i A 式中Ni为第i类景观斑块数量。PD值越高,景观破碎度越高
Tab.2  衡量景观破碎化的典型景观指数
Fig.4  1991—2021年禄劝县LULC时空变化
地类 高程 坡度 年均降水 年均温度 距主要道路的距离 距主要河流的距离 人口密度
耕地 0.24 0.19 0.19 0.13 0.10 0.09 0.07
林地 0.22 0.17 0.15 0.16 0.11 0.12 0.07
草地 0.25 0.15 0.14 0.16 0.10 0.12 0.07
水域 0.37 0.30 0.05 0.04 0.03 0.09 0.13
建设用地 0.24 0.16 0.09 0.14 0.13 0.10 0.14
裸地 0.49 0.06 0.15 0.09 0.08 0.05 0.07
Tab.3  不同驱动因子对LULC变化的重要性
地类 CA-Markov LCM FLUS PLUS
生产精度 用户精度 生产精度 用户精度 生产精度 用户精度 生产精度 用户精度
耕地 0.74 0.51 0.77 0.45 0.68 0.67 0.70 0.70
林地 0.74 0.89 0.60 0.85 0.85 0.85 0.87 0.87
草地 0.37 0.37 0.33 0.31 0.56 0.57 0.63 0.63
水域 0.46 0.77 0.35 0.60 0.41 0.73 0.61 0.88
建设用地 0.09 0.36 0.23 0.43 0.26 0.27 0.40 0.41
裸地 0.07 0.12 0.25 0.33 0.50 0.46 0.45 0.46
Kappa系数 0.46 0.35 0.58 0.63
总体精度 0.66 0.58 0.75 0.78
Tab.4  不同LULC模拟模型的模拟精度
Fig.5  4种模型模拟的禄劝县2021年不同LULC类型的面积
Fig.6  4种模型模拟的2021年禄劝县LULC的空间格局
Fig.7  4种模型模拟的LULC景观破碎度指数
Fig.8  禄劝县2027年LULC的空间分布格局和面积
Fig.9  2021年禄劝县不同LULC的景观指数
[1] 李少英, 刘小平, 黎夏, 等. 土地利用变化模拟模型及应用研究进展[J]. 遥感学报, 2017, 21(3):329-340.
Li S Y, Liu X P, Li X, et al. Simulation model of land use dynamics and application:Progress and prospects[J]. Journal of Remote Sensing, 2017, 21(3):329-340.
[2] Eastman J R. IDRISI Andes guide to GlS and image processing[M]. America: Clark University, Worcester, 2006,87-131.
[3] Yang J, Su J, Chen F, et al. A local land use competition cellular automata model and its application[J]. ISPRS International Journal of Geo-Information, 2016, 5(7):106.
doi: 10.3390/ijgi5070106
[4] Veldkamp A, Fresco L O. CLUE:A conceptual model to study the conversion of land use and its effects[J]. Ecological Modelling, 1996, 85(2/3):253-270.
doi: 10.1016/0304-3800(94)00151-0
[5] Verburg P H, Soepboer W, Veldkamp A, et al. Modeling the spatial dynamics of regional land use:The CLUE- S model[J]. Environmental Management, 2002, 30(3):391-405.
pmid: 12148073
[6] Liu X P, Liang X, Li X, et al. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects[J]. Landscape and Urban Planning, 2017, 168:94-116.
doi: 10.1016/j.landurbplan.2017.09.019
[7] Liang X, Guan Q F, Clarke K C, et al. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model:A case study in Wuhan,China[J]. Computers,Environment and Urban Systems, 2021, 85:101569.
doi: 10.1016/j.compenvurbsys.2020.101569
[8] 陆文涛, 代超, 郭怀成. 基于Dyna-CLUE模型的滇池流域土地利用情景设计与模拟[J]. 地理研究, 2015, 34(9):1619-1629.
doi: 10.11821/dlyj201509002
Lu W T, Dai C, Guo H C. Land use scenario design and simulation based on Dyna-CLUE model in Dianchi Lake Watershed[J]. Geographical Research, 2015, 34(9):1619-1629.
doi: 10.11821/dlyj201509002
[9] Sakayarote K, Shrestha R P. Simulating land use for protecting food crop areas in northeast Thailand using GIS and Dyna-CLUE[J]. Journal of Geographical Sciences, 2019, 29(5):803-817.
doi: 10.1007/s11442-019-1629-7
[10] Chen Z Z, Huang M, Zhu D Y, et al. Integrating remote sensing and a Markov-FLUS model to simulate future land use changes in Hokkaido,Japan[J]. Remote Sensing, 2021, 13(13):2621.
doi: 10.3390/rs13132621
[11] Darvishi A, Yousefi M, Marull J. Modelling landscape ecological assessments of land use and cover change scenarios.Application to the Bojnourd Metropolitan Area (NE Iran)[J]. Land Use Policy, 2020, 99:105098.
doi: 10.1016/j.landusepol.2020.105098
[12] 林伊琳, 赵俊三, 陈国平, 等. 基于MCR-FLUS-Markov模型的区域国土空间格局优化[J]. 农业机械学报, 2021, 52(4):159-170,207.
Lin Y L, Zhao J S, Chen G P, et al. Optimization of regional territory space pattern based on MCR-FLUS-Markov model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4):159-170,207.
[13] 崔旺来, 蔡莉, 奚恒辉, 等. 基于土地利用/覆盖变化的浙江大湾区生态安全评价及多情景模拟分析[J]. 生态学报, 2022, 42(6):2136-2148.
Cui W L, Cai L, Xi H H, et al. Ecological security assessment and multi-scenario simulation analysis of Zhejiang Greater Bay Area based on LUCC[J]. Acta Ecologica Sinica, 2022, 42(6): 2136-2148.
[14] 林丽, 樊辉, 金缘. 山区县域土地利用/覆被变化多尺度多模型模拟对比——以云南省勐腊县为例[J]. 山地学报, 2020, 38(4):630-642.
Lin L, Fan H, Jin Y. Multi-scale and multi-model simulation of land use/ land cover change in the mountainous county:A case study of Mengla County in Yunnan Province,China[J]. Mountain Research, 2020, 38(4):630-642.
[15] 杨济达, 欧晓昆, 呙靖雯, 等. 基于CA-Markov和Geomod模型橡胶林变化预测比较[J]. 山地学报, 2014, 32(3):267-276.
Yang J D, Ou X K, Guo J W, et al. Comparison of CA-Markov and geomod models for rubber plantation prediction[J]. Mountain Research, 2014, 32(3):267-276.
[16] 陈柯欣, 丛丕福, 卢伟志, 等. CA-Markov与LCM模型的黄河三角洲湿地变化模拟比较[J]. 地球信息科学学报, 2019, 21(12):1903-1910.
doi: 10.12082/dqxxkx.2019.180660
Chen K X, Cong P F, Lu W Z, et al. Comparison of the CA-Markov and LCM models in simulating wetland change in the Yellow River Delta[J]. Journal of Geo-information Science, 2019, 21(12):1903-1910.
[17] Wang J, Zhang J P, Xiong N N, et al. Spatial and temporal variation,simulation and prediction of land use in ecological conservation area of western Beijing[J]. Remote Sensing, 2022, 14(6):1452.
doi: 10.3390/rs14061452
[18] 赵学斌. 巩固提升产业扶贫成果与乡村产业振兴有效衔接——以昆明市禄劝县为例[D]. 昆明: 云南师范大学, 2022.
Zhao X B. Consolidate and enhance the achievements of industrial poverty alleviation and the revitalization of rural industries effective connection:A case of study of Luquan County,Kunming[D]. Kunming: Yunnan Normal University, 2022.
[19] 饶凯. 典型高山峡谷生态脆弱县土地生态安全评价研究——以云南禄劝彝族苗族自治县为例[D]. 昆明: 云南财经大学, 2020.
Rao K. A study on the land ecological security evaluation of typical mountain and canyon ecologically fragile counties:A case study of Luquan Yi and Miao Autonomous County in Yunnan Province[D]. Kunming: Yunnan university of finance and economics, 2020.
[20] Li J, Wang J L, Zhang J, et al. Growing-season vegetation coverage patterns and driving factors in the China-Myanmar Economic Corridor based on Google Earth Engine and geographic detector[J]. Ecological Indicators, 2022, 136:108620.
doi: 10.1016/j.ecolind.2022.108620
[21] 左岍, 周勇, 李晴, 等. 鄂西南地区土地利用格局时空变化及轨迹特征分析[J]. 水土保持学报, 2022, 36(1):161-169.
Zuo Q, Zhou Y, Li Q, et al. Analysis of spatial and temporal changes and trajectory characteristics of land use pattern in the southwest Hubei[J]. Journal of Soil and Water Conservation, 2022, 36(1):161-169.
[22] 徐新良, 刘纪远, 张树文, 等. 中国多时期土地利用土地覆被遥感监测数据集(CNLUCC)[EB/OL]. 中国科学院地理科学与资源研究所数据注册与出版系统(http://www.resdc.cn/DOI ), 2018.
Xu X L, Liu J Y, Zhang S W, et al. Multi period remote sensing monitoring data set of land use and land cover in China (CNLUCC)[EB/OL]. Data Registration and Publishing System of Institute of Geographic Sciences and Resources,Chinese Academy of Sciences (http://www.resdc.cn/DOI ), 2018.
[23] Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3907-3925.
doi: 10.5194/essd-13-3907-2021
[24] Jun C, Ban Y F, Li S N. China:Open access to Earth land-cover map[J]. Nature, 2014, 514(7523): 434.
[25] Liu C L, Li W L, Zhu G F, et al. Land use/land cover changes and their driving factors in the northeastern Tibetan Plateau based on geographical detectors and Google earth engine: A case study in Gannan prefecture[J]. Remote Sensing, 2020, 12:3139.
doi: 10.3390/rs12193139
[26] Zhai R T, Zhang C R, Li W D, et al. Evaluation of driving forces of land use and land cover change in new England area by a mixed method[J]. ISPRS International Journal of Geo-Information, 2020, 9(6):350.
doi: 10.3390/ijgi9060350
[27] 李柳华, 刘小平, 欧金沛, 等. 基于随机森林模型的城市扩张三维特征时空变化及机制分析[J]. 地理与地理信息科学, 2019, 35(2):53-60.
Li L H, Liu X P, Ou J P, et al. Spatio-temporal changes and mechanism analysis of urban 3D expansion based on random forest model[J]. Geography and Geo-Information Science, 2019, 35(2):53-60.
[28] 郭平, 周伟, 袁涛, 等. 衰退型资源城市土地利用时空变化及驱动因素分析[J]. 水土保持研究, 2016, 23(4):191-198.
Guo P, Zhou W, Yuan T, et al. Analysis on the temporal and spatial change of land use and its driving factors of declining resources-based city[J]. Research of Soil and Water Conservation, 2016, 23(4):191-198.
[29] 王旭东, 姚尧, 任书良, 等. 耦合FLUS和Markov的快速发展城市土地利用空间格局模拟方法[J]. 地球信息科学学报, 2022, 24(1):100-113.
doi: 10.12082/dqxxkx.2022.210359
Wang X D, Yao Y, Ren S L, et al. A coupled FLUS and Markov approach to simulate the spatial pattern of land use in rapidly developing cities[J]. Journal of Geo-information Science, 2022, 24(1):100-113.
[30] 田晶, 郭生练, 刘德地, 等. 气候与土地利用变化对汉江流域径流的影响[J]. 地理学报, 2020, 75(11):2307-2318.
doi: 10.11821/dlxb202011003
Tian J, Guo S L, Liu D D, et al. Impacts of climate and land use/cover changes on runoff in the Hanjiang River Basin[J]. Acta Geographica Sinica, 2020, 75(11):2307-2318.
doi: 10.11821/dlxb202011003
[31] 李金雷, 刘欢, 哈斯娜, 等. 岱海流域土地利用动态模拟及生态系统服务价值测算[J]. 生态学杂志, 2022, 41(2):343-350.
Li J L, Liu H, Ha S N, et al. Simulation of land use and evaluation of ecosystem service value in Daihai Basin[J]. Chinese Journal of Ecology, 2022, 41(2):343-350.
[32] 郑青华, 罗格平, 朱磊, 等. 基于CA-Markov模型的伊犁河三角洲景观格局预测[J]. 应用生态学报, 2010, 21(4):873-882.
Zheng Q H, Luo G P, Zhu L, et al. Prediction of landscape patterns in Ili River Delta based on CA-Markov model[J]. Chinese Journal of Applied Ecology, 2010, 21(4):873-882.
[33] 林媚珍, 刘汉仪, 周汝波, 等. 多情景模拟下粤港澳大湾区生态系统服务评估与权衡研究[J]. 地理研究, 2021, 40(9):2657-2669.
doi: 10.11821/dlyj020200943
Lin M Z, Liu H Y, Zhou R B, et al. Evaluation and trade-offs of ecosystem services in Guangdong-Hong Kong-Macao Greater Bay Area under multi-scenario simulation[J]. Geographical Research, 2021, 40(9):2657-2669.
doi: 10.11821/dlyj020200943
[34] 王佳楠, 张志. 基于Markov-PLUS模型的柴北缘土地利用变化及模拟分析[J]. 西北林学院学报, 2022, 37(3):139-148,179.
Wang J N, Zhang Z. Land use change and simulation analysis in the northern margin of the Qaidam Basin based on Markov-PLUS model[J]. Journal of Northwest Forestry University, 2022, 37(3):139-148,179.
[35] Zheng W, Shen Q P, Wang H, et al. Simulating land use change in urban renewal areas:A case study in Hong Kong[J]. Habitat International, 2015, 46: 23-34.
doi: 10.1016/j.habitatint.2014.10.008
[36] 付扬军, 师学义, 和娟. 汾河流域景观破碎化时空演变特征[J]. 自然资源学报, 2019, 34(8):1606-1619.
Fu Y J, Shi X Y, He J. The spatio-temporal evolution characteristics of landscape fragmentation in Fenhe River Basin[J]. Journal of Natural Resources, 2019, 34(8):1606-1619.
doi: 10.31497/zrzyxb.20190804
[37] 刘世梁, 安南南, 侯笑云, 等. 澜沧江下游景观破碎化时空动态及成因分析[J]. 生态环境学报, 2018, 27(7):1351-1358.
doi: 10.16258/j.cnki.1674-5906.2018.07.020
Liu S L, An N N, Hou X Y, et al. Spatio-temporal dynamics of landscape fragmentation and its influencing analysis in the downstream of Lancang River Basin[J]. Ecology and Environmental Sciences, 2018, 27(7):1351-1358.
[38] 邵大伟, 吴殿鸣. 景观破碎化对生态系统服务价值的影响作用分析——以苏州为例[J]. 长江流域资源与环境, 2020, 29(11):2436-2449.
Shao D W, Wu D M. Analysis on the effect of landscape fragmentation on ecosystem service value:A case study of Suzhou[J]. Resources and Environment in the Yangtze Basin, 2020, 29(11):2436-2449.
[39] 梁加乐, 陈万旭, 李江风, 等. 黄河流域景观破碎化时空特征及其成因探测[J]. 生态学报, 2022, 42(5):1993-2009.
Liang J L, Chen W X, Li J F, et al. Spatiotemporal patterns of landscape fragmentation and causes in the Yellow River Basin[J]. Acta Ecologica Sinica, 2022, 42(5):1993-2009.
[1] 陈健, 李虎, 刘玉锋, 常竹, 韩伟杰, 刘赛赛. 基于Sentinel-2数据多特征优选的农作物遥感识别研究[J]. 自然资源遥感, 2023, 35(4): 292-300.
[2] 杜晓川, 娄德波, 徐林刚, 范莹琳, 张琳, 李婉悦. 基于GF-2影像和随机森林算法的花岗伟晶岩提取[J]. 自然资源遥感, 2023, 35(4): 53-60.
[3] 余绍淮, 徐乔, 余飞. 联合光学和SAR遥感影像的山区公路滑坡易发性评价方法[J]. 自然资源遥感, 2023, 35(4): 81-89.
[4] 钟骁勇, 李洪义, 郭冬艳, 谢模典, 赵婉如, 胡碧峰. 基于多源环境变量和随机森林模型的江西省耕地土壤pH值空间预测[J]. 自然资源遥感, 2023, 35(4): 178-185.
[5] 伍炜超, 叶发旺. 面向多背景环境的Sentinel-2云检测[J]. 自然资源遥感, 2023, 35(3): 124-133.
[6] 席磊, 舒清态, 孙杨, 黄金君, 宋涵玥. 基于ICESat2的西南山地森林LAI遥感估测模型优化[J]. 自然资源遥感, 2023, 35(3): 160-169.
[7] 排日海·合力力, 昝梅. 干旱区绿洲城市生态环境时空格局变化及影响因子研究[J]. 自然资源遥感, 2023, 35(3): 201-211.
[8] 梁锦涛, 陈超, 张自力, 刘志松. 一种融合指数与主成分分量的随机森林遥感图像分类方法[J]. 自然资源遥感, 2023, 35(3): 35-42.
[9] 吴玉鑫, 王卷乐, 韩保民, 严欣荣. 基于时空谱特征的墨脱县森林分类方法与实现[J]. 自然资源遥感, 2023, 35(1): 180-188.
[10] 张昊, 高小红, 史飞飞, 李润祥. 基于Sentinel-2 MSI与Sentinel-1 SAR相结合的黄土高原西部撂荒地提取——以青海民和县为例[J]. 自然资源遥感, 2022, 34(4): 144-154.
[11] 王春霞, 张俊, 李屹旭, Phoumilay. 复杂环境下GF-2影像水体指数的构建及验证[J]. 自然资源遥感, 2022, 34(3): 50-58.
[12] 邓静雯, 田义超, 张强, 陶进, 张亚丽, 黄升光. 机载LiDAR在红树林林分平均高估算中的应用[J]. 自然资源遥感, 2022, 34(3): 129-137.
[13] 王雪洁, 施国萍, 周子钦, 甄洋. 基于随机森林算法对ERA5太阳辐射产品的订正[J]. 自然资源遥感, 2022, 34(2): 105-111.
[14] 吴琳琳, 李晓燕, 毛德华, 王宗明. 基于遥感和多源地理数据的城市土地利用分类[J]. 自然资源遥感, 2022, 34(1): 127-134.
[15] 柳明星, 刘建红, 马敏飞, 蒋娅, 曾靖超. 基于GF-2 PMS影像和随机森林的甘肃临夏花椒树种植监测[J]. 自然资源遥感, 2022, 34(1): 218-229.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发