Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (4): 178-185    DOI: 10.6046/zrzyyg.2022294
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于多源环境变量和随机森林模型的江西省耕地土壤pH值空间预测
钟骁勇1,2(), 李洪义3,4, 郭冬艳2, 谢模典3,4, 赵婉如3,4, 胡碧峰3,4()
1.江西财经大学财税与公共管理学院,南昌 330013
2.中国自然资源经济研究院,北京 101149
3.江西财经大学旅游与城市管理学院,南昌 330013
4.江西财经大学财经数据科学重点实验室,南昌 330013
Spatial distribution prediction of soil pH in arable land of Jiangxi Province based on multi-source environmental variables and the random forest model
ZHONG Xiaoyong1,2(), LI Hongyi3,4, GUO Dongyan2, XIE Modian3,4, ZHAO Wanru3,4, HU Bifeng3,4()
1. School of Finance and Public Administration, Jiangxi University of Finance and Economics, Nanchang 330013, China
2. Chinese Academy of Natural Resources Economics, Beijing 101149, China
3. School of Tourism and Urban Management, Jiangxi University of Finance and Economics, Nanchang 330013, China
4. Key Laboratory of Data Science in Finance and Economics, Jiangxi University of Finance and Economics, Nanchang 330013, China
全文: PDF(4067 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

研究多源环境变量条件下随机森林(random forest,RF)模型和普通克里格(ordinary Kriging,OK)模型对大尺度耕地土壤pH值空间预测的性能差异,研究分析RF模型对提升土壤pH值预测精度的参考价值。以中国江西省为研究区,基于气候、地形和植被等环境协变量信息,结合土壤属性和耕地利用条件,利用RF模型对江西省耕地土壤pH值进行空间预测,识别土壤pH值空间变异的影响因素,并与OK模型计算精度进行对比。结果表明,增加土壤属性和耕地利用条件作为环境变量的RF-A模型预测耕地土壤pH值的精度优于以地形、气候、植被属性作为环境变量的RF-B模型和OK模型的预测结果,气候因素是决定土壤pH值的最重要因素,地形地貌因子和人为因素对pH值变异也有重要影响。研究结果表明该方法对提升大尺度耕地土壤pH值预测制图精度具有一定的理论和现实意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟骁勇
李洪义
郭冬艳
谢模典
赵婉如
胡碧峰
关键词 耕地土壤pH值随机森林江西省影响因素    
Abstract

This study aims to compare the accuracy of random forest(RF) and ordinary kriging(OK) model for predicting spatial distribution of soil pH in arable land of Jiangxi Province using different covariates combination, and assess the feasibility and potential of RF method for improving the prediction accuracy of soil pH value. The RF algorithm is used to predict the pH value of cultivated soil in Jiangxi Province based on environmental covariate such as climate, topography and vegetation, combined with soil properties and cultivated land use conditions, identify the main influencing factors. The results produced by the RF was compared with the classical OK interpolation model. Our results showed that the accuracy of RF-A model with soil properties and cultivated land use conditions as environmental variables is better than that of RF-B model which only including terrain, climate and vegetation attributes as environmental variables. Climatic condition is the dominate factor which control the spatial variation of soil pH. the topographic factors and anthropogenic factors also have essential effect on spatial variability of soil pH. Thus, this study proved RF method has theoretical and practical significance for improving the accuracy of soil pH prediction at large-scale.

Key wordsarable land    soil pH    random forest    Jiangxi Province    influencing factor
收稿日期: 2022-07-27      出版日期: 2023-12-21
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“南疆滴灌棉田水盐四维时空变异性与管理风险评价研究”(42071068);江西省高校人文社会科学研究项目“江西省自然资源生态系统服务价值评估”(GL21217);江西省教育厅科技项目“近20年江西省耕地生态系统服务价值时空变化及驱动因子分析”(GJJ210541);江西省社会科学基金项目“江西省耕地资源资产价值核算及时空变异特征研究”(21YJ43D)
通讯作者: 胡碧峰(1992-),男,博士,副教授,主要从事土地生态与环境、资源环境遥感与信息技术、时空统计分析与建模研究。Email: hbfddmm297@163.com
作者简介: 钟骁勇(1990-),男,博士,副研究员,主要从事自然资源权益管理和土地资源核算研究。Email: zhongxy0509@126.com
引用本文:   
钟骁勇, 李洪义, 郭冬艳, 谢模典, 赵婉如, 胡碧峰. 基于多源环境变量和随机森林模型的江西省耕地土壤pH值空间预测[J]. 自然资源遥感, 2023, 35(4): 178-185.
ZHONG Xiaoyong, LI Hongyi, GUO Dongyan, XIE Modian, ZHAO Wanru, HU Bifeng. Spatial distribution prediction of soil pH in arable land of Jiangxi Province based on multi-source environmental variables and the random forest model. Remote Sensing for Natural Resources, 2023, 35(4): 178-185.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022294      或      https://www.gtzyyg.com/CN/Y2023/V35/I4/178
Fig.1  研究区土壤采样点分布
变量类别 具体指标 数据来源
地形变量 地貌类型、高程、坡度、坡向、剖面曲率、平面曲率、沟谷深度、地形湿度指数、垂直到沟谷距离和多分辨率谷底平坦度 中国科学院资源环境科学数据中心(http://www.resdc.cn/)
气候变量 年均气温、年降水量 中国科学院资源环境科学数据中心(http://www.resdc.cn/)
植被指数 归一化植被指数 中国科学院资源环境科学数据中心(http://www.resdc.cn/)
土壤属性 土壤类型、有机质、有效磷、速效钾、全氮、全磷、全钾、阳离子交换量、成土母质和耕层质地 2018年江西省耕地质量等别数据库、1980年和2010年江西省农业测土配方项目实测数据
耕地利用条件 灌溉保证率、排水条件、氮肥用量、磷肥P2O5用量、钾肥K2O用量、秸秆还田比例和秸秆还田量 2018年江西省耕地质量等别数据库
Tab.1  土壤pH值空间预测的环境变量及数据来源
组别 mtry ntree 训练集r 验证集r
1组 2 300 0.969 0.551
600 0.970 0.558
900 0.970 0.556
1 200 0.970 0.559
1 500 0.970 0.555
2组 4 300 0.970 0.567
600 0.970 0.574
900 0.970 0.573
1 200 0.971 0.573
1 500 0.971 0.572
3组 6 300 0.969 0.579
600 0.969 0.578
900 0.970 0.579
1 200 0.970 0.580
1 500 0.970 0.580
4组 8 300 0.969 0.582
600 0.970 0.582
900 0.970 0.583
1 200 0.970 0.582
1 500 0.969 0.581
Tab.2  RF模型中节点分裂次数和决策树数量的筛选
预测模型 抽样比 训练集 验证集
r ME MAE RMSE r ME MAE RMSE
RF-A 8∶2 0.970 -0.004 0.121 0.167 0.599 -0.009 0.291 0.392
7∶3 0.970 -0.004 0.121 0.167 0.567 -0.014 0.299 0.401
6∶4 0.970 -0.004 0.122 0.168 0.566 -0.018 0.302 0.406
RF-B 8∶2 0.966 -0.005 0.127 0.175 0.548 -0.023 0.307 0.413
7∶3 0.967 -0.005 0.127 0.175 0.525 -0.019 0.308 0.418
6∶4 0.967 -0.005 0.127 0.174 0.504 -0.014 0.314 0.425
OK 8∶2 0.679 0.002 0.261 0.364 0.559 0.009 0.311 0.409
7∶3 0.683 0.001 0.259 0.357 0.588 0.007 0.289 0.394
6∶4 0.652 0.002 0.278 0.379 0.541 0.010 0.328 0.414
Tab.3  使用不同训练集时RF和OK模型预测精度比较
Fig.2  RF-A模型变量相对重要性
Fig.3  基于RF-A,RF-B和OK模型的耕地pH值空间分布
Fig.4  RF-A模型预测值与实测值散点图
Fig.5  pH值空间变异的影响因素关系
[1] 毛伟, 李文西, 高晖, 等. 扬州市耕地土壤pH值30年演变及其驱动因子[J]. 植物营养与肥料学报, 2017, 23(4):883-893.
Mao W, Li W X, Gao H, et al. pH variation and the driving factors of farmlands in Yangzhou for 30 years[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(4):883-893.
[2] Oh N H, Richter D D. Soil acidification induced by elevated atmospheric CO2[J]. Global Change Biology, 2004, 10(11):1936-1946.
doi: 10.1111/gcb.2004.10.issue-11
[3] Kirk G J D, Bellamy P H, Lark R M. Changes in soil pH across England and Wales in response to decreased acid deposition[J]. Global Change Biology, 2010, 16(11):3111-3119.
doi: 10.1111/gcb.2010.16.issue-11
[4] Tian D, Niu S. A global analysis of soil acidification caused by nitrogen addition[J]. Environmental Research Letters, 2015, 10(2):024019.
doi: 10.1088/1748-9326/10/2/024019
[5] Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968):1008-1010.
doi: 10.1126/science.1182570 pmid: 20150447
[6] Hu B F, Jia X L, Hu J, et al. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta,China[J]. International Journal of Environmental Research and Public Health, 2017, 14(9):1042.
doi: 10.3390/ijerph14091042
[7] Hu B F, Shao S, Fu Z, et al. Identifying heavy metal pollution hot spots in soil-rice systems:A case study in South of Yangtze River Delta,China[J]. Science of the Total Environment, 2019, 658:614-625.
doi: 10.1016/j.scitotenv.2018.12.150
[8] 杨之江, 陈效民, 景峰, 等. 基于GIS和地统计学的稻田土壤养分与重金属空间变异[J]. 应用生态学报, 2018, 29(6):1893-1901.
doi: 10.13287/j.1001-9332.201806.036
Yang Z J, Chen X M, Jing F, et al. Spatial variability of nutrients and heavy metals in paddy field soils based on GIS and geostatistics[J]. Chinese Journal of Applied Ecology, 2018, 29(6):1893-1901.
[9] Xia F, Hu B, Zhu Y, et al. Improved mapping of potentially toxic elements in soil via integration of multiple data sources and various geostatistical methods[J]. Remote Sensing, 2020, 12(22):3775.
doi: 10.3390/rs12223775
[10] Hu B, Zhou Y, Jiang Y, et al. Spatio-temporal variation and source changes of potentially toxic elements in soil on a typical plain of the Yangtze River Delta,China (2002—2012)[J]. Journal of Environmental Management, 2020, 271:110943.
doi: 10.1016/j.jenvman.2020.110943
[11] 丁亚鹏, 张俊华, 刘玉寒, 等. 基于GWR模型的伊河流域土壤有机碳空间分布特征及影响因素分析[J]. 生态学报, 2021, 41(12):4876-4885.
Ding Y P, Zhang J H, Liu Y H, et al. Spatial distribution characteristics and influencing factors of soil organic carbon in Yihe River basin based on GWR model[J]. Acta Ecologica Sinica, 2021, 41(12):4876-4885.
[12] 张阳, 屠乃美, 谢会雅, 等. 茶陵县烟稻复种区土壤养分时空变异特征[J]. 土壤通报, 2021, 52(2):297-305.
Zhang Y, Tu N M, Xie H Y, et al. Spatial and temporal variation of soil nutrients in tobacco-rice multiple-cropping area of Chaling[J]. Chinese Journal of Soil Science, 2021, 52(2):297-305.
doi: 10.1046/j.1365-2389.2001.00380.x
[13] McBratney A B, Santos M L M, Minasny B. On digital soil mapping[J]. Geoderma, 2003, 117(1-2):3-52.
doi: 10.1016/S0016-7061(03)00223-4
[14] Teng H, Rossel R A V, Shi Z, et al. Updating a national soil classification with spectroscopic predictions and digital soil mapping[J]. Catena, 2018, 164:125-134.
doi: 10.1016/j.catena.2018.01.015
[15] Peng J, Biswas A, Jiang Q, et al. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province,China[J]. Geoderma, 2019, 337:1309-1319.
doi: 10.1016/j.geoderma.2018.08.006
[16] 庞龙辉, 刘峰, 赵霞, 等. 青海省表层土壤属性数字制图[J]. 土壤通报, 2019, 50(3):505-513.
Pang L H, Liu F, Zhao X, et al. Digital mapping of topsoil attributes in Qinghai Province[J]. Chinese Journal of Soil Science, 2019, 50(3):505-513.
doi: 10.1046/j.1365-2389.1999.00245.x
[17] Arrouays D, Poggio L, Guerrero O A S, et al. Digital soil mapping and GlobalSoilMap.Main advances and ways forward[J]. Geoderma Regional, 2020, 21:e00265.
doi: 10.1016/j.geodrs.2020.e00265
[18] Li H, Liu X, Hu B, et al. Field-scale characterization of spatio-temporal variability of soil salinity in three dimensions[J]. Remote Sensing, 2020, 12(24):4043.
doi: 10.3390/rs12244043
[19] Yan F, Shang G W, Zhang J, et al. Depth-to-bedrock map of China at a spatial resolution of 100 meters[J]. Scientific Data, 2020, 7(1):1-13.
doi: 10.1038/s41597-019-0340-y
[20] Fu T, Zhao R, Hu B, et al. Novel framework for modelling the cadmium balance and accumulation in farmland soil in Zhejiang Province,east China:Sensitivity analysis,parameter optimisation,and forecast for 2050[J]. Journal of Cleaner Production, 2021, 279:123674.
doi: 10.1016/j.jclepro.2020.123674
[21] 何林倩, 刘倩, 王德彩, 等. 基于数字土壤制图技术的土壤有机碳储量估算[J]. 应用生态学报, 2021, 32(2):591-600.
doi: 10.13287/j.1001-9332.202102.014
He L Q, Liu Q, Wang D C, et al. Estimation of soil organic carbon storage based on digital soil mapping technique[J]. Chinese Journal of Applied Ecology, 2021, 32(2):591-600.
[22] 张甘霖, 朱阿兴, 史舟, 等. 土壤地理学的进展与展望[J]. 地理科学进展, 2018, 37(1):57-65.
doi: 10.18306/dlkxjz.2018.01.007
Zhang G L, Zhu A X, Shi Z, et al. Progress and future prospect of soil geography[J]. Progress in Geography, 2018, 37(1):57-65.
doi: 10.18306/dlkxjz.2018.01.007
[23] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
doi: 10.1023/A:1010933404324
[24] 任丽, 杨联安, 王辉, 等. 基于随机森林的苹果区土壤有机质空间预测[J]. 干旱区资源与环境, 2018, 32(8):141-146.
Ren L, Yang L A, Wang H, et al. Spatial prediction of soil organic matter in apple region based on random forest[J]. Journal of Arid Land Resources and Environment, 2018, 32(8):141-146.
[25] O’Brien R, Ishwaran H. A random forests quantile classifier for class imbalanced data[J]. Pattern Recognition, 2019, 90:232-249.
doi: 10.1016/j.patcog.2019.01.036 pmid: 30765897
[26] Pouladi N, Møller A B, Tabatabai S, et al. Mapping soil organic matter contents at field level with Cubist,random forest and Kriging[J]. Geoderma, 2019, 342:85-92.
doi: 10.1016/j.geoderma.2019.02.019
[27] Vaysse K, Lagacherie P. Using quantile regression forest to estimate uncertainty of digital soil mapping products[J]. Geoderma, 2017, 291:55-64.
doi: 10.1016/j.geoderma.2016.12.017
[28] Guo P T, Li M F, Luo W, et al. Digital mapping of soil organic matter for rubber plantation at regional scale:An application of random forest plus residuals Kriging approach[J]. Geoderma, 2015, 237:49-59.
[29] da Silva Chagas C, de Carvalhe W Jr, Bhering S B, et al. Spatial prediction of soil surface texture in a semiarid region using random forest and multiple linear regressions[J]. Catena, 2016, 139:232-240.
doi: 10.1016/j.catena.2016.01.001
[30] Camera C, Zomeni Z, Noller J S, et al. A high resolution map of soil types and physical properties for Cyprus:A digital soil mapping optimization[J]. Geoderma, 2017, 285:35-49.
doi: 10.1016/j.geoderma.2016.09.019
[31] Amirian-Chakan A, Minasny B, Taghizadeh-Mehrjardi R, et al. Some practical aspects of predicting texture data in digital soil mapping[J]. Soil and Tillage Research, 2019, 194:104289.
doi: 10.1016/j.still.2019.06.006
[32] Chen S C, Liang Z Z, Webster R, et al. A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution[J]. Science of the Total Environment, 2019, 655:273-283.
doi: 10.1016/j.scitotenv.2018.11.230
[33] 卢宏亮, 赵明松, 刘斌寅, 等. 基于随机森林模型的安徽省土壤属性空间分布预测[J]. 土壤, 2019, 51(3):602-608.
Lu H L, Zhao M S, Liu B Y, et al. Spatial prediction of soil properties based on random forest model in Anhui Province[J]. Soils, 2019, 51(3):602-608.
[34] 王世航, 卢宏亮, 赵明松, 等. 基于不同特征挖掘方法结合广义提升回归模型估测安徽省土壤pH[J]. 应用生态学报, 2020, 31(10):3509-3517.
doi: 10.13287/j.1001-9332.202010.018
Wang S H, Lu H L, Zhao M S, et al. Assessing soil pH in Anhui Province based on different features mining methods combined with generalized boosted regression models[J]. Chinese Journal of Applied Ecology, 2020, 31(10):3509-3517.
[35] 周宏冀. 江西省耕地土壤pH空间变异与管理分区研究[D]. 南昌: 江西财经大学, 2019.
Zhou H J. Study on spatial variation and management zoning of soil pH value of cultivated land in Jiangxi Province[D]. Nanchang: Jiangxi University of Finance and Economics, 2019.
[36] 齐雁冰, 王茵茵, 陈洋, 等. 基于遥感与随机森林算法的陕西省土壤有机质空间预测[J]. 自然资源学报, 2017, 32(6):1074-1086.
doi: 10.11849/zrzyxb.20160623
Qi Y B, Wang Y Y, Chen Y, et al. Soil organic matter prediction based on remote sensing data and random forest model in Shaanxi Province[J]. Journal of Natural Resources, 2017, 32(6):1074-1086.
[37] 袁玉琦, 陈瀚阅, 张黎明, 等. 基于多变量与RF算法的耕地土壤有机碳空间预测研究——以福建亚热带复杂地貌区为例[J]. 土壤学报, 2021, 58(4):887-899.
Yuan Y Q, Chen H Y, Zhang L M, et al. Prediction of spatial distribution of soil organic carbon in farmland based on multi-variables and random forest algorithm: A case study of a subtropical complex geomorphic region in Fujian as an example[J]. Acta Pedologica Sinica, 2021, 58(4):887-899.
[38] 王洪, 曹婧, 毋俊华, 等. 近40年来陕西省耕层土壤pH的时空变化特征[J]. 中国生态农业学报(中英文), 2021, 29(6):1117-1126.
Wang H, Cao J, Wu J H, et al. Spatial and temporal variability in soil pH of Shaanxi Province over the last 40 years[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6):1117-1126.
[39] 戴万宏, 黄耀, 武丽, 等. 中国地带性土壤有机质含量与酸碱度的关系[J]. 土壤学报, 2009, 46(5):851-860.
Dai W H, Huang Y, Wu L, et al. Relationships between soil organic matter content(SOM) and pH in topsoil of zonal soils in China[J]. Acta Pedologica Sinica, 2009, 46(5):851-860.
[40] 许亚琪. 土壤阳离子交换量的分析结果研究[J]. 干旱环境监测, 2018, 32(1):19-23.
Xu Y Q. Study on the analytical results of soil cationic exchange capacity[J]. Arid Environmental Monitoring, 2018, 32(1):19-23.
[41] 康婷, 周春火, 魏宗强, 等. 江西省土壤阳离子交换量区域分布特征及其影响因素[J]. 中国农学通报, 2021, 37(14):66-71.
doi: 10.11924/j.issn.1000-6850.casb2020-0486
Kang T, Zhou C H, Wei Z Q, et al. Regional distribution characteristics and influencing factors of soil cation exchange capacity in Jiangxi[J]. Chinese Agricultural Science Bulletin, 2021, 37(14):66-71.
doi: 10.11924/j.issn.1000-6850.casb2020-0486
[42] 王晖, 邢小军, 许自成. 攀西烟区紫色土pH值与土壤养分的相关分析[J]. 中国土壤与肥料, 2007(6):19-22.
Wang H, Xing X J, Xu Z C. Relationship between pH value and available nutrients of purple soil in panxi tobacco-growing areas[J]. Soil and Fertilizer Sciences in China, 2007(6):19-22.
[43] 朱丹妹, 刘岩, 张丽, 等. 不同类型土壤淹水对pH、Eh、Fe及有效态Cd含量的影响[J]. 农业环境科学学报, 2017, 36(8):1508-1517.
Zhu D M, Liu Y, Zhang L, et al. Effects of pH,Eh,Fe,and flooded time on available-Cd content after flooding of different kinds of soil[J]. Journal of Agro-Environment Science, 2017, 36(8):1508-1517.
[44] Ding C, Du S, Ma Y, et al. Changes in the pH of paddy soils after flooding and drainage:Modeling and validation[J]. Geoderma, 2019, 337:511-513.
doi: 10.1016/j.geoderma.2018.10.012
[1] 陈健, 李虎, 刘玉锋, 常竹, 韩伟杰, 刘赛赛. 基于Sentinel-2数据多特征优选的农作物遥感识别研究[J]. 自然资源遥感, 2023, 35(4): 292-300.
[2] 杜晓川, 娄德波, 徐林刚, 范莹琳, 张琳, 李婉悦. 基于GF-2影像和随机森林算法的花岗伟晶岩提取[J]. 自然资源遥感, 2023, 35(4): 53-60.
[3] 余绍淮, 徐乔, 余飞. 联合光学和SAR遥感影像的山区公路滑坡易发性评价方法[J]. 自然资源遥感, 2023, 35(4): 81-89.
[4] 何苏玲, 贺增红, 潘继亚, 王金亮. 基于多模型的县域土地利用/土地覆盖模拟[J]. 自然资源遥感, 2023, 35(4): 201-213.
[5] 伍炜超, 叶发旺. 面向多背景环境的Sentinel-2云检测[J]. 自然资源遥感, 2023, 35(3): 124-133.
[6] 席磊, 舒清态, 孙杨, 黄金君, 宋涵玥. 基于ICESat2的西南山地森林LAI遥感估测模型优化[J]. 自然资源遥感, 2023, 35(3): 160-169.
[7] 排日海·合力力, 昝梅. 干旱区绿洲城市生态环境时空格局变化及影响因子研究[J]. 自然资源遥感, 2023, 35(3): 201-211.
[8] 梁锦涛, 陈超, 张自力, 刘志松. 一种融合指数与主成分分量的随机森林遥感图像分类方法[J]. 自然资源遥感, 2023, 35(3): 35-42.
[9] 吴玉鑫, 王卷乐, 韩保民, 严欣荣. 基于时空谱特征的墨脱县森林分类方法与实现[J]. 自然资源遥感, 2023, 35(1): 180-188.
[10] 张昊, 高小红, 史飞飞, 李润祥. 基于Sentinel-2 MSI与Sentinel-1 SAR相结合的黄土高原西部撂荒地提取——以青海民和县为例[J]. 自然资源遥感, 2022, 34(4): 144-154.
[11] 王宇, 周忠发, 王玲玉, 骆剑承, 黄登红, 张文辉. 基于Sentinel-1的喀斯特高原山区种植结构空间分异研究[J]. 自然资源遥感, 2022, 34(4): 155-165.
[12] 王春霞, 张俊, 李屹旭, Phoumilay. 复杂环境下GF-2影像水体指数的构建及验证[J]. 自然资源遥感, 2022, 34(3): 50-58.
[13] 邓静雯, 田义超, 张强, 陶进, 张亚丽, 黄升光. 机载LiDAR在红树林林分平均高估算中的应用[J]. 自然资源遥感, 2022, 34(3): 129-137.
[14] 张淑, 周忠发, 王玲玉, 陈全, 骆剑承, 赵馨. 多时相SAR的喀斯特山区耕地表层土壤水分反演[J]. 自然资源遥感, 2022, 34(3): 154-163.
[15] 王雪洁, 施国萍, 周子钦, 甄洋. 基于随机森林算法对ERA5太阳辐射产品的订正[J]. 自然资源遥感, 2022, 34(2): 105-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发