Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (3): 154-163    DOI: 10.6046/zrzyyg.2021268
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
多时相SAR的喀斯特山区耕地表层土壤水分反演
张淑1,2,3(), 周忠发1,2(), 王玲玉1,3, 陈全1,2, 骆剑承4, 赵馨1,3
1.贵州师范大学地理与环境科学学院/喀斯特研究院,贵阳 550001
2.贵州省喀斯特山地生态环境国家重点实验室培育基地,贵阳 550001
3.国家喀斯特石漠化防治工程技术研究中心,贵阳 550001
4.中国科学院空天信息创新研究院,北京 100101
Inversion of moisture in surface soil of farmland in karst mountainous areas using multi-temporal SAR images
ZHANG Shu1,2,3(), ZHOU Zhongfa1,2(), WANG Lingyu1,3, CHEN Quan1,2, LUO Jiancheng4, ZHAO Xin1,3
1. School of Geography and Environmental Science/School of Karst Science, Guizhou Normal University, Guiyang 550001, China
2. The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang 550001, China
3. State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China
4. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
全文: PDF(5114 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

农田土壤水分对作物估产和干旱监测具有重要作用,是喀斯特山区耕地精细化监测的重要参数。针对喀斯特地区耕地破碎、土壤水分反演易受云雾干扰等复杂环境影响,在地块尺度上,基于多时相Sentinel-1合成孔径雷达(synthetic aperture Radar,SAR)和无人机RGB影像,利用水云模型和支持向量机回归模型反演烟草生长期的土壤水分。结果表明: ①研究引入可见光波段差异植被指数(visible-band difference vegetation index, VDVI)代替传统的植被参数,结合VDVI的水云模型在喀斯特山区适用性良好,同极化方式的反演精度更高,决定系数为0.843,均方根误差为0.983%,为多云雨山区耕地土壤含水量反演提供了一种便捷方法; ②烟草4个生长期内土壤含水量与降雨趋势保持一致,石漠化耕地土壤水分较低,与该试验区岩石裸露、地形复杂、难以灌溉关系密切; ③土壤水分对烟草的生长影响显著,主要表现在高土壤水分起促进作用,低土壤水分起抑制作用,T1—T3时刻影响效果最为明显。研究为多云雨山区耕地土壤水分精细化反演提供了参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张淑
周忠发
王玲玉
陈全
骆剑承
赵馨
关键词 土壤水分耕地地块水云模型SARSentinel-1无人机遥感烟草生长期    
Abstract

The farmland’s soil moisture plays an important role in crop yield estimation and drought monitoring and is also a key parameter for fine-scale monitoring of farmland in karst mountainous areas. Targeting the complex environmental impacts in karst regions such as farmland fragmentation and the fact that the inversion of soil moisture is vulnerable to cloud interference, this study employed both the water cloud model (WCM) and the support vector regression (SVR) model to conduct the block-scale inversion of the soil moisture in the growth periods of tobacco using the multi-temporal Sentinel-1 synthetic aperture Radar (SAR) images and the unmanned aerial vehicle (UAV) RGB images. The results are as follows. ① In this study, conventional vegetation parameters were replaced with the visible-band difference vegetation index (VDVI), which combined with its water cloud model was highly applicable to karst mountainous areas. The co-polarization method yielded higher inversion precision, with a coefficient of determination of 0.843 and RMSE of 0.983%. These provide a convenient method for the inversion of farmland’s soil moisture in cloudy and rainy mountainous areas. ② The trend of soil moisture in the four growth periods of tobacco is consistent with that of precipitation. Farmland with rocky desertification has low soil moisture, which is closely related to the bare rocks, complex terrain, and difficulties with irrigation in the experimental area. ③ Soil moisture has significant effects on tobacco growth. Specifically, high soil moisture promotes tobacco growth and low soil moisture inhibits tobacco growth, especially during T1—T3. This study can be utilized as a reference for the fine-scale inversion of the farmland’s soil moisture in cloudy and rainy mountainous areas.

Key wordssoil moisture    farmland parcel    water cloud model    SAR    Sentinel-1    UAV remote sensing    tobacco growth period
收稿日期: 2021-08-30      出版日期: 2022-09-21
ZTFLH:  TP79  
基金资助:国家自然科学基金地区项目“喀斯特石漠化地区生态资产与区域贫困耦合机制研究”(41661088);贵州省科技计划项目“喀斯特石漠化地区生态系统服务价值演变机制研究”(黔科合平台人才[2017]5726-57);贵州省高层次创新型人才培养计划项目——“百”层次人才(黔科合平台人才[2016]5674)
通讯作者: 周忠发
作者简介: 张 淑(1995-),女,硕士研究生,主要从事GIS与遥感应用研究。Email: zhangshu260@163.com
引用本文:   
张淑, 周忠发, 王玲玉, 陈全, 骆剑承, 赵馨. 多时相SAR的喀斯特山区耕地表层土壤水分反演[J]. 自然资源遥感, 2022, 34(3): 154-163.
ZHANG Shu, ZHOU Zhongfa, WANG Lingyu, CHEN Quan, LUO Jiancheng, ZHAO Xin. Inversion of moisture in surface soil of farmland in karst mountainous areas using multi-temporal SAR images. Remote Sensing for Natural Resources, 2022, 34(3): 154-163.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021268      或      https://www.gtzyyg.com/CN/Y2022/V34/I3/154
Fig.1  研究区及样本的位置
数据类型 空间分辨率/m 数据来源 用途
Sentinel-1A 5×20 欧洲航天局 提取后向散射系数
Google Earth RGB影像 0.538 Google Earth
Engine
提取耕地地块
UAV 0.032 航摄相片 计算VWC
实测数据 地面实测 建立样本的测试集和训练集
Tab.1  土壤水分反演数据来源
生长期 成像时间 平均入射角/(°) 成像模式 极化方式
T1 2020-05-29 40.386 IW1 VV,VH
T2 2020-06-23 40.410 IW1 VV,VH
T3 2020-07-28 40.167 IW1 VV,VH
T4 2020-09-02 40.411 IW1 VV,VH
Tab.2  Sentinel-1数据获取情况
生长期 株高/m 叶片数/个 叶展/m LAI
T1 0.173 3 0.226 0.097
T2 0.671 15 0.823 1.657
T3 1.088 11 1.028 1.447
T4 0.966 3 0.445 0.488
Tab.3  烟草不同生长期基础数据
Fig.2  技术路线图
Fig.3  土壤含水量实测值与反演值比较
Fig.4  烟草4个生长期共180个实测样本的土壤含水量实测值、反演值与误差值分布
Fig.5  研究区烟草样本反演值与实测值的土壤含水量统计
Fig.6  烟草不同生长期土壤含水量反演结果与降雨量统计
Fig.7  试验区烟草不同生长期土壤含水量
烟草生
长数据
土壤含水量
T1 T2 T3 T4
株高 -0.132 0.598** -0.221 0.535**
叶展 -0.466*① 0.401* 0.279 -0.250
叶片数 0.147 0.263 0.279 -0.466*
LAI -0.385 -0.087 0.171 -0.596**
Tab.4  烟草不同生长期土壤水分与株高、叶展、叶片数及LAI的相关关系
Fig.8  烟草不同生长期株高、叶展、叶片数、LAI与土壤含水量的变化过程
[1] Anagnostopoulos V, Petropoulos G P, Ireland G, et al. A modernized version of a 1D soil vegetation atmosphere transfer model for improving its future use in land surface interactions studies[J]. Environmental Modelling and Software, 2017(90):147-156.
[2] Bolten J D, Crow W T, Zhan X, et al. Evaluating the utility of remotely sensed soil moisture retrievals for operational agricultural drought monitoring[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(1):57-66.
doi: 10.1109/JSTARS.2009.2037163
[3] Mccoll K A, Alemohammad S H, Akbar R, et al. The global distribution and dynamics of surface soil moisture[J]. Nature Geoence, 2017, 10(2):100-104.
[4] 罗占春, 杜伟, 张卫星. 土壤水分与烟草生长发育和生理代谢的相关研究进展[J]. 山地农业生物学报, 2009, 28(5):446-451.
Luo Z C, Du W, Zhang W X. The progress on the effect of soil water on growth and development and physiological metabolism of Tobacco[J]. Journal of Mountain Agriculture and Biology, 2009, 28(5):446-451.
[5] Al Y A, Wigneron J P, Ducharne A, et al. Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to land data assimilation system estimates[J]. Remote Sensing of Environment, 2014, 149(1): 181-195.
doi: 10.1016/j.rse.2014.04.006
[6] Hajnsek I, Jagdhuber T, Schcoen H, et al. Potential of estimating soil moisture under vegetation cover by means of PolSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2): 442-454.
doi: 10.1109/TGRS.2008.2009642
[7] Trudel M, Charbonneau F, Leconte R. Using RADARSAT-2 polarimetric and ENVISAT-ASAR dual-polarization data for estimating soil moisture over agricultural fields[J]. Canadian Journal of Remote Sensing, 2012, 38(4): 514-527.
[8] Ulaby F T, Sarabandl K, Mcdonald K. Michigan microwave canopy scattering model[J]. International Journal of Remote Sensing, 1990, 11(7):1223-1253.
doi: 10.1080/01431169008955090
[9] Joseph A T, Van d V R, O’Neill P E, et al. Soil moisture retrieval during a corn growth cycle using L-cand (1.6 GHz) Radar observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(8): 2365-2374.
doi: 10.1109/TGRS.2008.917214
[10] De Roo R D, Du Y, Ulaby F T, et al. A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(4): 864-872.
doi: 10.1109/36.917912
[11] Attema E P W, Ulaby F T. Vegetation modeled as a water cloud[J]. Radio Science, 1978, 13(2):357-364.
doi: 10.1029/RS013i002p00357
[12] 汪小钦, 王苗苗, 王绍强, 等. 基于可见光波段无人机遥感的植被信息提取[J]. 农业工程学报, 2015, 31(5):152-159.
Wang X Q, Wang M M, Wang S Q, et al. Extraction of vegetation information from visible unmanned aerial vehicle images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5):152-159.
[13] 丁雷龙, 李强子, 杜鑫, 等. 基于无人机图像颜色指数的植被识别[J]. 国土资源遥感, 2016, 28(1):78-86.doi: 10.6046/gtzyyg.2016.01.12.
doi: 10.6046/gtzyyg.2016.01.12
Ding L L, Li Q Z, Du X, et al. Vegetation extraction method based on color indices from UAV images[J]. Remote Sensing for Land and Resources, 2016, 28(1):78-86.doi: 10.6046/gtzyyg.2016.01.12.
doi: 10.6046/gtzyyg.2016.01.12
[14] 朱孟, 周忠发, 蒋翼, 等. 基于可见光波段无人机遥感的火龙果精准识别方法[J]. 激光与光电子学进展, 2020, 57(14):359-368.
Zhu M, Zhou Z F, Jiang Y, et al. An accurate recognition method of pitaya plants based on visible light band UAV remote sensing[J]. Laser and Optoelectronics Progress, 2020, 57(14):359-368.
[15] 李朝阳, 王普, 潘方博. 利用主动微波遥感数据监测土壤墒情方法[J]. 南水北调与水利科技, 2017, 15(2):224-228,253.
Li C Y, Wang P, Pan F B. Using active microwave remote sensing data to detect soil moisture[J]. South-to-North Water Transfers and Water Science and Technology, 2017, 15(2):224-228,253.
[16] Kim Y, van Zyl J J. A time-series approach to estimate soil moisture using polarimetric Radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8):2519-2527.
doi: 10.1109/TGRS.2009.2014944
[17] 张祥, 陈报章, 赵慧, 等. 基于时序Sentinel-1A数据的农田土壤水分变化检测分析[J]. 遥感技术与应用, 2017, 32(2):338-345.
Zhang X, Chen B Z, Zhao H, et al. Soil moisture change detection over bare agricultural area by means of time-series Sentinel-1A SAR data[J]. Remote Sensing Technology and Application, 2017, 32(2):338-345.
[18] 姜红, 玉素甫江·如素力, 拜合提尼沙·阿不都克日木, 等. 基于支持向量机回归算法的土壤水分光学与微波遥感协同反演[J]. 地理与地理信息科学, 2017, 33(6):30-36.
Jiang H, Yusufujiang R, Baihetinisha A, et al. Soil moisture retrieval by synergizing optical and microwave remote sensing data based on support vector machine regression algorithm[J]. Geography and Geo-Information Science, 2017, 33(6):30-36.
[19] 杨贵军, 岳继博, 李长春, 等. 基于改进水云模型和Radarsat-2数据的农田土壤含水量估算[J]. 农业工程学报, 2016, 32(22):146-153.
Yang G J, Yue J B, Li C C, et al. Estimation of soil moisture in farmland using improved water cloud model and Radarsat-2 data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(22):146-153.
[20] 郭交, 刘健, 宁纪锋, 等. 基于Sentinel多源数据的农田地表土壤水分反演模型构建与验证[J]. 农业工程学报, 2019, 35(14):71-78.
Guo J, Liu J, Ning J F, et al. Construction and validation of soil moisture retrieval model in farmland based on Sentinel multi-source data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(14):71-78.
[21] 黄启厅, 曾志康, 谢国雪, 等. 基于高时空分辨率遥感数据协同的作物种植结构调查[J]. 南方农业学报, 2017, 48(3):552-560.
Huang Q T, Zeng Z K, Xie G X, et al. Investigation on crop planting structure based on synergy of high spatial-temporal resolution remote sensing data[J]. Journal of Southern Agriculture, 2017, 48(3):552-560.
[22] 赵馨, 周忠发, 王玲玉, 等. 喀斯特山区石漠化耕地遥感精准提取与分析——以贵州省北盘江镇与花江镇为例[J]. 热带地理, 2020, 40(2):289-302.
doi: 10.13284/j.cnki.rddl.003233
Zhao X, Zhou Z F, Wang L Y, et al. Extraction and analysis of cultivated land experiencing rocky desertification in Karst mountain areas based on remote sensing:A case study of Beipanjiang Town and Huajiang Town in Guizhou Province[J]. Tropical Geography, 2020, 40 (2):289-302.
doi: 10.13284/j.cnki.rddl.003233
[23] 王玲玉, 陈全, 吴跃, 等. 基于地块级时序NDVI的喀斯特山区撂荒地特征精准识别[J]. 国土资源遥感, 2020, 32(3):23-31.doi: 10.6046/gtzyyg.2020.03.04.
doi: 10.6046/gtzyyg.2020.03.04
Wang L Y, Chen Q, Wu Y, et al. Accurate recognition and extraction of Karst abandoned land features based on cultivated land parcels and time series NDVI[J]. Remote Sensing for Land and Resources, 2020, 32(3):23-31.doi: 10.6046/gtzyyg.2020.03.04.
doi: 10.6046/gtzyyg.2020.03.04
[24] 刘巍, 吴志峰, 骆剑承, 等. 深度学习支持下的丘陵山区耕地高分辨率遥感信息分区分层提取方法[J]. 测绘学报, 2021, 50(1):105-116.
Liu W, Wu Z F, Luo J C, et al. A divided and stratified extraction method of high-resolution remote sensing information for cropland in hilly and mountainous areas based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(1):105-116.
[25] Bindlish R, Barros A P. Parameterization of vegetation backscatter in Radar-based,soil moisture estimation[J]. Remote Sensing of Environment, 2001, 76(1):130-137.
doi: 10.1016/S0034-4257(00)00200-5
[26] Jackson T J, Schmugge T J. Vegetation effects on the microwave emission of soils[J]. Remote Sensing of Environment, 1991, 36(3): 203-212.
doi: 10.1016/0034-4257(91)90057-D
[27] 刘万侠, 王娟, 刘凯, 等. 植被覆盖地表主动微波遥感反演土壤水分算法研究[J]. 热带地理, 2007(5):411-415,450.
Liu W X, Wang J, Liu K, et al. Soil moisture data retrieval by active microwave remote sensing on vegetative land[J]. Tropical geo-graphy, 2007(5):411-415,450.
[28] 陈全, 周忠发, 王玲玉, 等. 基于多时相Sentinel-1 SAR数据的喀斯特石漠化区地表土壤水分反演研究[J]. 红外与毫米波学报, 2020, 39(5):626-634.
Chen Q, Zhou Z F, Wang L Y, et al. Surface soil moisture retrieval using multi-temporal Sentinel-1 SAR data in Karst rocky desertification area[J]. Journal of Infrared and Millimeter Waves, 2020, 39(5):626-634.
[1] 姜德才, 郑向向, 王宁, 肖春蕾, 朱振洲. 时序InSAR技术在珠三角地区地质灾害隐患识别中的应用[J]. 自然资源遥感, 2023, 35(3): 292-301.
[2] 董婷, 符潍奇, 邵攀, 高利鹏, 武昌东. 基于改进全连接条件随机场的SAR影像变化检测[J]. 自然资源遥感, 2023, 35(3): 134-144.
[3] 林佳惠, 刘广, 范景辉, 赵红丽, 白世彪, 潘宏宇. 联合改进U-Net模型和D-InSAR技术采矿沉陷提取方法[J]. 自然资源遥感, 2023, 35(3): 145-152.
[4] 高晨, 马栋, 屈曼, 钱建国, 尹海权, 侯晓真. 基于PS-InSAR的怀来地震台钻孔体应变异常机理研究[J]. 自然资源遥感, 2023, 35(3): 153-159.
[5] 刘辉, 徐心月, 陈蜜, 陈富龙, 丁瑞力, 刘菲. 秦皇岛段明长城时序InSAR遥感动态监测[J]. 自然资源遥感, 2023, 35(2): 202-211.
[6] 潘建平, 付占宝, 邓福江, 蔡卓言, 赵瑞淇, 崔伟. 时序InSAR解析消落带区域岸坡地表形变及其水要素影响[J]. 自然资源遥感, 2023, 35(2): 212-219.
[7] 邱磊, 张学志, 郝大为. 基于深度学习的视频SAR动目标检测与跟踪算法[J]. 自然资源遥感, 2023, 35(2): 157-166.
[8] 何彬方, 姚筠, 冯妍, 刘惠敏, 戴娟. 基于Sentinel-1A的安徽省2020年梅雨期洪水淹没监测[J]. 自然资源遥感, 2023, 35(1): 140-147.
[9] 虎小强, 杨树文, 闫恒, 薛庆, 张乃心. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023, 35(1): 171-179.
[10] 付昱凯, 杨树文, 闫恒, 薛庆, 洪卫丽, 苏航. 耦合非局部自相似性与散度的SAR与光学影像融合[J]. 自然资源遥感, 2023, 35(1): 99-106.
[11] 张昊, 高小红, 史飞飞, 李润祥. 基于Sentinel-2 MSI与Sentinel-1 SAR相结合的黄土高原西部撂荒地提取——以青海民和县为例[J]. 自然资源遥感, 2022, 34(4): 144-154.
[12] 王宇, 周忠发, 王玲玉, 骆剑承, 黄登红, 张文辉. 基于Sentinel-1的喀斯特高原山区种植结构空间分异研究[J]. 自然资源遥感, 2022, 34(4): 155-165.
[13] 董继红, 马志刚, 梁京涛, 刘彬, 赵聪, 曾帅, 鄢圣武, 马晓波. 基于时序InSAR技术的滑坡隐患识别对比研究[J]. 自然资源遥感, 2022, 34(3): 73-81.
[14] 罗雪玮, 向喜琼, 吕亚东. 龙里某塌陷时序InSAR变形监测的PS修正[J]. 自然资源遥感, 2022, 34(3): 82-87.
[15] 张志华, 胡长涛, 张镇, 杨树文. 基于PS-InSAR上海地区地表沉降监测与分析[J]. 自然资源遥感, 2022, 34(3): 106-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发