Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (4): 282-294    DOI: 10.6046/zrzyyg.2023168
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于升降轨SAR数据的兰坪县黄登水电站上游时间序列地表形变研究
俞文轩1(), 李益敏2(), 计培琨2, 冯显杰1, 向倩英1
1.云南大学国际河流与生态安全研究院,昆明 650500
2.云南大学地球科学学院,昆明 650500
Time series surface deformation of the upper reaches of Huangdeng hydropower station in Lanping County based on ascending and descending SAR data
YU Wenxuan1(), LI Yimin2(), JI Peikun2, FENG Xianjie1, XIANG Qianying1
1. Institute of International Rivers and Eco-security, Yunnan University,Kunming 650500, China
2. College of Earth Science, Yunnan University, Kunming 650500, China
全文: PDF(14206 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

星载合成孔径雷达干涉测量技术(interferometric synthetic aperture Radar,InSAR)是目前被广泛应用于地表形变监测的一种具有全天时、全天候、高精度的大范围监测手段,但由于形变观测方法单一,在形变监测过程中不可避免地存在很大不确定性,进而产生误判。针对单次监测产生的不确定性,该文基于升降轨SAR数据集的短基线集时间序列InSAR(small baseline subset InSAR,SBAS-InSAR)结果二维解算的技术,分析了2020年4月—2022年8月黄登水电站上游地表形变情况。研究结果表明,使用34景Sentinel-1升轨数据和降轨数据,获取了黄登水电站上游的二维形变,识别出黄登水电站上游6处滑坡隐患点; 发现研究区形变以水平向为主,其中车邑坪区域的二维形变速率最大,水平形变速率达到158 mm/a,垂直形变速率达到81 mm/a。此外,通过对澜沧江江岸距离、降雨量和时间序列形变进行相关性分析,得到了研究区二维形变的分布情况及其季节性变化特征。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
俞文轩
李益敏
计培琨
冯显杰
向倩英
关键词 SBAS时序InSAR二维解算形变监测    
Abstract

The interferometric synthetic aperture radar (InSAR) technique is widely applied to surface deformation monitoring, providing all-weather, all-time, and high-precision measurements over large areas. However, due to the limitations of the single deformation observation method, significant uncertainties inevitably arise during the monitoring process, leading to potential misinterpretations. Using the SBAS-InSAR (small baseline subset) two-dimensional solution technique based on ascending and descending SAR data, this study analyzed the surface deformations of the upper reaches of the Huangdeng Hydropower Station from April 2020 to August 2022. A total of 34 scenes of ascending and descending data from the Sentinel-1 satellite were used to derive the two-dimensional deformations of the upper reaches, with six potential landslide hazard sites there being identified. The results indicate that the study area displayed a predominance of horizontal surface deformations, with the highest two-dimensional deformation rates of up to 158 mm/a horizontally and 81 mm/a vertically observed in the Cheyiping area. Additionally, by correlation analysis between the distance from the Lancang River bank, rainfall, and the time-series deformations, this study identified the distribution of two-dimensional deformations in the upper reaches and its seasonal variations.

Key wordsSBAS    time series InSAR    two-dimensional analysis    deformation monitoring
收稿日期: 2023-06-09      出版日期: 2024-12-23
ZTFLH:  TP79  
基金资助:云南省科技厅—云南大学联合基金重点项目“‘天空地’协同的高山峡谷区重大地质灾害隐患识别监测预警研究”(2019FY003017);云南省中老孟缅自然资源遥感监测国际联合实验室和中国地质调查局项目“重要区域地质灾害监测评价与综合遥感地质调查“(DD20221824)
通讯作者: 李益敏(1965-),女,学士,研究员,研究方向为3S技术在生态安全、山地环境变化监测中的应用以及地质灾害评价、早期识别、监测预警研究。Email : liyimin1965@163.com
作者简介: 俞文轩(1999-),男,硕士研究生,研究方向为InSAR形变监测。Email: yuwenxuan202305@163.com
引用本文:   
俞文轩, 李益敏, 计培琨, 冯显杰, 向倩英. 基于升降轨SAR数据的兰坪县黄登水电站上游时间序列地表形变研究[J]. 自然资源遥感, 2024, 36(4): 282-294.
YU Wenxuan, LI Yimin, JI Peikun, FENG Xianjie, XIANG Qianying. Time series surface deformation of the upper reaches of Huangdeng hydropower station in Lanping County based on ascending and descending SAR data. Remote Sensing for Natural Resources, 2024, 36(4): 282-294.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023168      或      https://www.gtzyyg.com/CN/Y2024/V36/I4/282
Fig.1  研究区的地理位置和 SAR 图像覆盖范围
数据源 波长/cm 轨道 入射角/(°) 影像数量/景 极化方式 时间跨度
Sentinel-1A SLC IW 5.55 升轨 39.27 34 VV 2020/05/06—2022/08/12
降轨 39.46 34 VV 2020/04/26—2022/08/26
Tab.1  研究中使用的雷达图像参数
Fig.2  技术路线图
Fig.3  SBAS-InSAR时空基线
Fig.4  雷达飞行方向和地表运动方向投影的示意图
Fig.5  SBAS-InSAR在LOS方向的监测结果
Fig.6  3种插值方法对比
Fig.7  水平向和垂直向的监测结果
Fig.8  车邑坪村村民房屋裂缝
Fig.9  车邑坪村区域形变速率
Fig.10  AB剖面水平向和垂直向形变速率
Fig.11  特征点的时间序列累计形变
Fig.12-1  支角登区域
Fig.12-2  支角登区域
Fig.13  界坪村区域
Fig.14  大格拉岩子区域
Fig.15  新农村上方区域
Fig.16-1  新农村下方区域
Fig.16-2  新农村下方区域
[1] Bartle A. Hydropower potential and development activities[J]. Energy Policy, 2002, 30(14):1231-1239.
[2] Hennig T, Wang W, Feng Y, et al. Review of Yunnan’s hydropower development.Comparing small and large hydropower projects regarding their environmental implications and socio-economic consequences[J]. Renewable and Sustainable Energy Reviews, 2013, 27:585-595.
[3] Wang L, Chen C, Zou R, et al. Surface gravity and deformation effects of water storage changes in China’s Three Gorges Reservoir constrained by modeled results and in situ measurements[J]. Journal of Applied Geophysics, 2014, 108:25-34.
[4] Bosa S, Petti M. Shallow water numerical model of the wave generated by the Vajont landslide[J]. Environmental Modelling and Software, 2011, 26(4):406-418.
[5] Zhang L, Liao M, Balz T, et al. Monitoring landslide activities in the three gorges area with multi-frequency satellite SAR data sets[M]//Modern Technologies for Landslide Monitoring and Prediction. Berlin,Heidelberg: Springer Berlin Heidelberg, 2015:181-208.
[6] Froude M J, Petley D N. Global fatal landslide occurrence from 2004 to 2016[J]. Natural Hazards and Earth System Sciences, 2018, 18(8):2161-2181.
[7] 云烨, 吕孝雷, 付希凯, 等. 星载InSAR技术在地质灾害监测领域的应用[J]. 雷达学报, 2020, 9(1):73-85.
Yun Y, Lyu X L, Fu X K, et al. Application of spaceborne interferometric synthetic aperture radar to geohazard monitoring[J]. Journal of Radars, 2020, 9(1):73-85.
[8] Sandwell D T, Price E J. Phase gradient approach to stacking interferograms[J]. Journal of Geophysical Research:Solid Earth, 1998, 103(B12):30183-30204.
[9] Ferretti A, Prati C, Rocca F. Analysis of permanent scatterers in SAR interferometry[C]// IGARSS 2000.IEEE 2000 International Geoscience and Remote Sensing Symposium.Taking the Pulse of the Planet:The Role of Remote Sensing in Managing the Environment.Proceedings (Cat.No.00CH37120).Honolulu,HI,USA.IEEE, 2002:761-763.
[10] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383.
[11] 杨帆, 巩世彬, 陈梓萌. 时序InSAR 技术对大连主城区沉降分析[J]. 测绘工程, 2022, 31(3):61-67.
Yang F, Gong S B, Chen Z M. Time series InSAR technology for settlement analysis of Dalian main urban area[J]. Engineering of Surveying and Mapping, 2022, 31(3):61-67.
[12] 虎小强, 杨树文, 闫恒, 等. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023, 35(1):171-179.doi:10.6046/zrzyyg.2021415.
Hu X Q, Yang S W, Yan H, et al. Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area,Xinjiang[J]. Remote Sensing for Natural Resources, 2023, 35(1):171-179.doi:10.6046/zrzyyg.2021415.
[13] 向淇文, 郭金城, 汪娟, 等. 时序InSAR在贵州区域地质灾害隐患识别的应用[J]. 测绘科学, 2022, 47(9):112-119.
Xiang Q W, Guo J C, Wang J, et al. Application of time series InSAR in recognition of hidden dangers of geological hazards in Guizhou area[J]. Science of Surveying and Mapping, 2022, 47(9):112-119.
[14] 张亚迪, 李煜东, 董杰, 等. 时序InSAR技术探测芒康地区滑坡灾害隐患[J]. 遥感学报, 2019, 23(5):987-996.
Zhang Y D, Li Y D, Dong J, et al. Landslide hazard detection in Markam with time-series InSAR analyses[J]. Journal of Remote Sensing, 2019, 23(5):987-996.
[15] Liu P, Li Z, Hoey T, et al. Using advanced InSAR time series techniques to monitor landslide movements in Badong of the Three Gorges region,China[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 21:253-264.
[16] Zhao C Y, Kang Y, Zhang Q, et al. Landslide detection and monitoring with insar technique over upper reaches of Jinsha River,China[C]// 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).Beijing,China.IEEE, 2016:2881-2884.
[17] Samsonov S, Dille A, Dewitte O, et al. Satellite interferometry for mapping surface deformation time series in one,two and three dimensions:A new method illustrated on a slow-moving landslide[J]. Engineering Geology, 2020, 266:105471.
[18] Maghsoudi Y, van der Meer F, Hecker C, et al. Using PS-InSAR to detect surface deformation in geothermal areas of West Java in Indonesia[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 64:386-396.
[19] Chen Y, Yu S, Tao Q, et al. Accuracy verification and correction of D-InSAR and SBAS-InSAR in monitoring mining surface subsidence[J]. Remote Sensing, 2021, 13(21):4365.
[20] Umarhadi D A, Avtar R, Widyatmanti W, et al. Use of multifrequency (C-band and L-band) SAR data to monitor peat subsidence based on time-series SBAS InSAR technique[J]. Land Degradation and Development, 2021, 32(16):4779-4794.
[21] Tao Q, Wang F, Guo Z, et al. Accuracy verification and evaluation of small baseline subset (SBAS) interferometric synthetic aperture radar (InSAR) for monitoring mining subsidence[J]. European Journal of Remote Sensing, 2021, 54(1):642-663.
[22] Zhang P, Guo Z, Guo S, et al. Land subsidence monitoring method in regions of variable radar reflection characteristics by integrating PS-InSAR and SBAS-InSAR techniques[J]. Remote Sensing, 2022, 14(14):3265.
[23] Shanker P, Casu F, Zebker H A, et al. Comparison of persistent scatterers and small baseline time-series InSAR results:A case study of the San francisco bay area[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4):592-596.
[24] Crosetto M, Monserrat O, Cuevas-González M, et al. Persistent scatterer interferometry:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115:78-89.
[25] Hu J, Li Z W, Ding X L, et al. Resolving three-dimensional surface displacements from InSAR measurements:A review[J]. Earth-Science Reviews, 2014, 133:1-17.
[26] Zhu Y F, Yao X, Yao C, et al. Integration of vertical and horizontal deformation derived by SAR observation for identifying landslide motion patterns in a basaltic weathered crust region of Guizhou,China[J]. Remote Sensing, 2022, 14(16):4014.
[27] Meng Q, Confuorto P, Peng Y, et al. Regional recognition and classification of active loess landslides using two-dimensional deformation derived from sentinel-1 interferometric radar data[J]. Remote Sensing, 2020, 12(10):1541.
[28] Chen Q, Zhang H, Xu B, et al. Accessing the time-series two-dimensional displacements around a reservoir using multi-orbit SAR datasets:A case study of xiluodu hydropower station[J]. Remote Sensing, 2022, 15(1):168.
[29] Ning Y, Tang H, Zhang G, et al. A complex rockslide developed from a deep-seated toppling failure in the upper Lancang River,Southwest China[J]. Engineering Geology, 2021, 293:106329.
[30] Zhong R, Zhao T, He Y, et al. Hydropower change of the water tower of Asia in 21st century:A case of the Lancang River hydropower base,upper Mekong[J]. Energy, 2019, 179:685-696.
[31] Wang H L, Zhao X F, Chen H J, et al. Evaluation of toppling rock slopes using a composite cloud model with DEMATEL-CRITIC method[J]. Water Science and Engineering, 2023, 16(3):280-288.
[32] Lanari R, Mora O, Manunta M, et al. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7):1377-1386.
[33] Fobert M A, Singhroy V, Spray J G. InSAR monitoring of landslide activity in Dominica[J]. Remote Sensing, 2021, 13(4):815.
[34] Fuhrmann T, Garthwaite M C. Resolving three-dimensional surface motion with InSAR:Constraints from multi-geometry data fusion[J]. Remote Sensing, 2019, 11(3):241.
[35] Wang H, Sun P, Zhang S, et al. Rainfall-induced landslide in loess area,Northwest China:A case study of the Changhe landslide on September 14,2019,in Gansu Province[J]. Landslides, 2020, 17(9):2145-2160.
[36] Guo C, Ma G, Xiao H, et al. Displacement back analysis of reservoir landslide based on multi-source monitoring data:A case study of the cheyiping landslide in the Lancang River Basin,China[J]. Remote Sensing, 2022, 14(11):2683.
[37] Xia M, Ren G M, Ma X L. Deformation and mechanism of landslide influenced by the effects of reservoir water and rainfall,Three Gorges,China[J]. Natural Hazards, 2013, 68(2):467-482.
[38] Li D, Yin K, Leo C. Analysis of Baishuihe landslide influenced by the effects of reservoir water and rainfall[J]. Environmental Earth Sciences, 2010, 60(4):677-687.
[39] Ma S, Qiu H, Hu S, et al. Characteristics and geomorphology change detection analysis of the Jiangdingya landslide on July 12,2018,China[J]. Landslides, 2021, 18(1):383-396.
[40] Cohen-Waeber J, Bürgmann R, Chaussard E, et al. Spatiotemporal patterns of precipitation-modulated landslide deformation from independent component analysis of InSAR time series[J]. Geophysical Research Letters, 2018, 45(4):1878-1887.
[1] 武德宏, 郝利娜, 严丽华, 唐烽顺, 郑光. 金沙江滑坡群InSAR探测与形变因素分析[J]. 自然资源遥感, 2024, 36(3): 259-266.
[2] 张利军, 贺思睿, 张建东, 彭光雄, 徐质彬, 谢渐成, 唐凯, 卜建财. 多源遥感技术支持下的滑坡地灾隐患识别——以常澧地区为例[J]. 自然资源遥感, 2024, 36(2): 173-187.
[3] 蔡建澳, 明冬萍, 赵文祎, 凌晓, 张雨, 张星星. 基于综合遥感的察隅县滑坡隐患识别及致灾机理分析[J]. 自然资源遥感, 2024, 36(1): 128-136.
[4] 金鑫田, 王世杰, 张兰军, 高星月. 基于InSAR技术门源地震地表形变监测与分析[J]. 自然资源遥感, 2024, 36(1): 26-34.
[5] 赵霞, 马新岩, 余虔, 王招冰. 高分辨率InSAR技术在北京大兴国际机场形变监测中的应用[J]. 自然资源遥感, 2024, 36(1): 49-57.
[6] 王宁, 姜德才, 郑向向, 钟昶. 基于多源异构数据斜坡地质灾害隐患易发性评价——以深圳市龙岗区为例[J]. 自然资源遥感, 2023, 35(4): 122-129.
[7] 赵华伟, 周林, 谭明伦, 汤明高, 童庆刚, 秦佳俊, 彭宇辉. 基于光学遥感和SBAS-InSAR的川渝输电网滑坡隐患早期识别[J]. 自然资源遥感, 2023, 35(4): 264-272.
[8] 刘辉, 徐心月, 陈蜜, 陈富龙, 丁瑞力, 刘菲. 秦皇岛段明长城时序InSAR遥感动态监测[J]. 自然资源遥感, 2023, 35(2): 202-211.
[9] 潘建平, 付占宝, 邓福江, 蔡卓言, 赵瑞淇, 崔伟. 时序InSAR解析消落带区域岸坡地表形变及其水要素影响[J]. 自然资源遥感, 2023, 35(2): 212-219.
[10] 虎小强, 杨树文, 闫恒, 薛庆, 张乃心. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023, 35(1): 171-179.
[11] 董继红, 马志刚, 梁京涛, 刘彬, 赵聪, 曾帅, 鄢圣武, 马晓波. 基于时序InSAR技术的滑坡隐患识别对比研究[J]. 自然资源遥感, 2022, 34(3): 73-81.
[12] 罗雪玮, 向喜琼, 吕亚东. 龙里某塌陷时序InSAR变形监测的PS修正[J]. 自然资源遥感, 2022, 34(3): 82-87.
[13] 李柱, 范洪冬, 高彦涛, 许耀宗. 基于DS-InSAR的乌达煤田火区长时序地表形变监测与分析[J]. 自然资源遥感, 2022, 34(3): 138-145.
[14] 麻学飞, 张双成, 惠文华, 许强. 山西省临汾市矿区地表形变InSAR大范围探测与监测[J]. 自然资源遥感, 2022, 34(3): 146-153.
[15] 徐子兴, 季民, 张过, 陈振炜. 基于SBAS-InSAR技术和Logistic模型的矿区沉降动态预测方法[J]. 自然资源遥感, 2022, 34(2): 20-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发