A method for field inspection of natural resource surveys using UAV-based geographic information video technology
WANG Yunkai1(), LI Anmin1, LIN Nan2, CAO Yijie3
1. Jiangsu Institute of Surveying and Mapping of Geology, Nanjing 211102, China 2. China MCC17 Group Co., Ltd., Maanshan 243000, China 3. Jiangsu Tuojia Engineering Design and Research Co., Ltd., Nanjing 211100,China
自然资源外业核查是自然资源调查重要的一环,该文针对传统自然资源调查外业核查过程中存在的工作效率低、有安全风险等问题,提出了一种基于无人机地理信息视频技术的外业核查应用方案。首先针对无人机地理信息视频技术的特点,结合自然资源外业核查工作的需求,将核查图斑分为地类判断和量测判断2种类型,并针对不同类型进行无人机地理信息视频的采集设计; 然后将采集的无人机地理信息视频与地理信息系统(geographic information system,GIS)平台联合进行图斑的判断量测。结合生产实践对设计方案进行了测试,测试结果表明,该方案能够提高图斑外业核查的效率,量测精度能够满足实际生产的需求,且弥补了地面拍照的局限性,降低了安全风险。
Field verification of natural resources is a vital part of natural resource surveys. To address issues such as low efficiency and security risks encountered in traditional field verification methods, this study developed an application scheme for field verification utilizing UAV-based geographic information video technology. First, this study examined the characteristics of UAV-based geographic information video technology. Based on these characteristics, as well as the requirements of field verification, the features for the field verification were categorized into two types: land use classification and measurement assessment. Subsequently, the UAV-based geographic information video acquisition was designed for each type. The collected videos were then combined with a geographic information system (GIS) platform for feature evaluation and measurement. The application scheme was tested based on production practices. The test results indicate that the proposed scheme can improve the efficiency of the field inspection, with the measurement accuracy meeting the demand for actual production needs. Furthermore, the scheme can overcome the limitations of ground-based photography and reduce safety risks.
王云凯, 李安民, 林楠, 曹易杰. 基于无人机地理信息视频技术的自然资源调查外业核查方法[J]. 自然资源遥感, 2025, 37(1): 76-81.
WANG Yunkai, LI Anmin, LIN Nan, CAO Yijie. A method for field inspection of natural resource surveys using UAV-based geographic information video technology. Remote Sensing for Natural Resources, 2025, 37(1): 76-81.
Zhong N N, Zong H K, Hu Z B, et al. Design and implementation of the third national land survey field verification system[J]. Urban Geotechnical Investigation and Surveying, 2020(6): 38-42.
Chen D Q. Design and implementation of natural resource field verification system based on microservice architecture[J]. Geospatial Information, 2021, 19(5): 123-126, 6.
Sun X B, Li Y C, Wang F, et al. Design and implementation of UAV geographic information video system[J]. Science of Surveying and Mapping, 2018, 43(10): 131-136, 156.
Wang L, Zhou X X, Wu C B. Fusion method of UAV real-time video and 3D geographical scene[J]. Bulletin of Surveying and Mapping, 2021(12): 33-37, 43.
doi: 10.13474/j.cnki.11-2246.2021.368
Meng J, Wang F, Li Y L, et al. Matching technology between emergency mapping video frame and GIS system[J]. Remote Sensing Information, 2022, 37(2): 91-96.
Ren L Y, Li Y C, Xiao J C, et al. Multi-source data integration and intelligent service of surveying and mapping UAV for disaster scene[J]. Science of Surveying and Mapping, 2020, 45(12): 139-144.
Wang P J, Xu Y M. Geo-spatial information science[M]. 3rd ed. Wuhan: Wuhan University Press, 2016.
[12]
姚娜. 低空无人机载组合宽角相机关键技术研究与性能分析[D]. 武汉: 武汉大学, 2013.
Yao N. Research on key technologies of low altitude UAV borne multi-head and wide-angle composite cameras and their performance evaluation[D]. Wuhan: Wuhan University, 2013.
[13]
王贤. 基于POS系统的数字正射影像制作研究[D]. 绵阳: 西南科技大学, 2018.
Wang X. Research on making digital orthophoto map based on position and orientation system[D]. Mianyang: Southwest University of Science and Technology, 2018.
[14]
叶晴旻. 大视场相机畸变校正相关技术的研究[D]. 杭州: 浙江大学, 2016.
Ye Q M. Research on related technology of correction of distortion of the large view camera[D]. Hangzhou: Zhejiang University, 2016.
[15]
李彤彤. 双目视觉系统的标定及畸变校正技术研究[D]. 长春: 吉林大学, 2019.
Li T T. Research on calibration and distortion correction technique of binocular vision system[D]. Changchun: Jilin University, 2019.