Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (4): 34-42    DOI: 10.6046/zrzyyg.2022484
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
3D-HRNet网络在珠海一号高光谱影像的自然资源监测应用及生态环境分析
曹德龙1(), 林震1, 唐廷元2, 李楚钰2(), 王晓锐2
1.北京林业大学生态文明研究院,北京 100083
2.北京市测绘设计研究院,北京 100038
Application of 3D-HRNet in Zhuhai-1 OHS hyperspectral images for natural resource monitoring and eco-environment analysis
CAO Delong1(), LIN Zhen1, TANG Tingyuan2, LI Chuyu2(), WANG Xiaorui2
1. Academy of Ecological Civilization, Beijing Forestry University, Beijing 100083, China
2. Beijing Institute of Surveying and Mapping, Beijing 100038, China
全文: PDF(3781 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

遥感和深度学习方法结合应用于自然资源的监测、评估是一种高效的方法。该研究综合考虑珠海一号高光谱影像的特性,在HRNet网络中引入3D卷积模块提出3D-HRNet网络用于自然资源调查监测的语义分割模型,并以遥感影像计算生物丰富度指数、植被覆盖指数、水网密度指数、土地应力指数、污染负荷指数和环境约束指数构建生态指数(ecological index,EI)生态评价模型,对北京市北部部分区域进行自然资源监测和评估。结果表明: ①3D-HRNet模型提取自然资源的平均总体精度为0.83,F1分数为0.83,Kappa系数为0.73,比HRNet模型分别高0.04,0.04和0.06,比3D-CNN模型分别高0.04,0.05和0.06,说明3D-HRNet模型提取高光谱影像的自然资源结果比HRNet模型更好,即3D卷积模块能更好地利用高光谱间特性提取信息; ②利用EI生态评价模型对北京市北部部分区域2020年生态环境进行评价,其EI平均值为68.2,反映了区域内生态状况良好,与北京市生态环境状况公报结论接近,说明遥感用于EI生态评价的可行性,为区域生态状况的时空分析提出创新性方法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹德龙
林震
唐廷元
李楚钰
王晓锐
关键词 3D-HRNet珠海一号高光谱影像自然资源调查监测EI生态评价    
Abstract

The combination of remote sensing and deep learning is efficient in the monitoring and evaluation of natural resources. Based on the comprehensive consideration of the characteristics of Zhuhai-1 OHS hyperspectral images, this study established the 3D-HRNet architecture by introducing the 3D convolutional module into the HRNet architecture and applied it to the semantic segmentation model for natural resources survey and monitoring. Using remote sensing images, this study established an ecological index (EI) evaluation model by calculating the species richness index, vegetation index, water network density index, land stress index, pollution load index, and environmental regulation index. Then, the model was employed to monitor and evaluate the natural resources in partial areas in the northern part of Beijing. The results show that: ① when being used to extract the natural resources, the 3D-HRNet model yielded average overall accuracy, a F1 score, and a Kappa coefficient of 0.83, 0.83, and 0.73, respectively, which were 0.04, 0.04, and 0.06 higher than those of the HRNet model, and 0.04, 0.05 and 0.06 higher than those of 3D-CNN model, respectively. This suggests that the 3D-HRNet model can extract natural resources from hyperspectral images more effectively than the HRNet model. In other words, the 3D convolutional module can utilize the inter-hyperspectral features to extract information more effectively; ② The eco-environment of partial areas in north Beijing in 2020 was evaluated using the EI evaluation model, with an average EI value of 68.2. This reflects a good ecological state in the study area, highly consistent with the conclusion of the Report on the State of the Ecology and Environment in Beijing, demonstrating the feasibility of remote sensing for ecological assessment. Therefore, this study provides an innovative method for the spatio-temporal analysis of the regional ecological state.

Key words3D-HRNet    Zhuhai-1 OHS hyperspectral image    natural resources survey and monitoring    EI evaluation
收稿日期: 2022-12-12      出版日期: 2023-12-21
ZTFLH:  TP79  
  P23  
基金资助:国家自然科学基金专项项目“基于新时期国家自然科学基金资助导向的资助体系优化研究”(J192400016);国家社科基金重点项目“习近平总书记科技创新思想与世界科技强国战略研究”(17AKS004);北京市社会科学基金重大项目“坚持和完善生态文明制度体系研究”(20LLZZA015)
通讯作者: 李楚钰(1996-),女,硕士,工程师,主要从事摄影测量与遥感方面的研究。Email: lichuyu1996@163.com
作者简介: 曹德龙(1988-),男,工程师,博士研究生,主要从事生态文明建设理论与应用、生态系统区域环境变化研究。Email: dron_tsao@bjfu.edu.cn
引用本文:   
曹德龙, 林震, 唐廷元, 李楚钰, 王晓锐. 3D-HRNet网络在珠海一号高光谱影像的自然资源监测应用及生态环境分析[J]. 自然资源遥感, 2023, 35(4): 34-42.
CAO Delong, LIN Zhen, TANG Tingyuan, LI Chuyu, WANG Xiaorui. Application of 3D-HRNet in Zhuhai-1 OHS hyperspectral images for natural resource monitoring and eco-environment analysis. Remote Sensing for Natural Resources, 2023, 35(4): 34-42.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022484      或      https://www.gtzyyg.com/CN/Y2023/V35/I4/34
Fig.1  研究区
Fig.2  影像和标签数据图
Fig.3  流程图
Fig.4  3D-HRNet网络结构
植被覆
盖率/%
坡度/(°)
<5 [5,8) [8,15) [15,25) [25,35] >35
<30 轻微 温和 中度 严重 极度严重 剧烈
[30,45) 轻微 温和 中度 中度 严重 极度严重
[45,60) 轻微 温和 温和 中度 中度 严重
[60,75] 轻微 温和 温和 温和 中度 中度
>75 轻微 轻微 轻微 轻微 轻微 轻微
Tab.1  植被覆盖率、坡度与侵蚀程度关系表
类别 区域一 区域二
真彩色影像
标签数据
HRNet模型预测结果
3D-CNN模型预测结果
3D-HRNet模型预测结果
图例
Tab.2  自然资源监测结果对比
模型 指标 区域一 区域二 平均
HRNet模型 召回率 0.78 0.80 0.79
准确率 0.53 0.56 0.55
F1分数 0.77 0.81 0.79
总体精度 0.78 0.80 0.79
Kappa系数 0.61 0.73 0.67
3D-CNN模型 召回率 0.79 0.78 0.78
准确率 0.44 0.55 0.49
F1分数 0.79 0.78 0.78
总体精度 0.80 0.78 0.79
Kappa系数 0.64 0.69 0.67
3D-HRNet模型 召回率 0.86 0.79 0.82
准确率 0.65 0.55 0.60
F1分数 0.86 0.79 0.82
总体精度 0.86 0.79 0.83
Kappa系数 0.75 0.71 0.73
Tab.3  模型精度对比表
Fig.5  各指标结果
Fig.6  EI分布结果
[1] Trabelsi M, Mandart E, Le Grusse P, et al. ESSIMAGE:A tool for the assessment of the agroecological performance of agricultural production systems[J]. Environmental Science and Pollution Research, 2019, 26(9):9257-9280.
doi: 10.1007/s11356-019-04387-9
[2] Boeraeve F, Dendoncker N, Cornélis J T, et al. Contribution of agroecological farming systems to the delivery of ecosystem services[J]. Journal of Environmental Management, 2020, 260:109576.
doi: 10.1016/j.jenvman.2019.109576
[3] Aubin J, Callier M, Rey-Valette H, et al. Implementing ecological intensification in fish farming:Definition and principles from contrasting experiences[J]. Reviews in Aquaculture, 2019, 11(1):149-167.
doi: 10.1111/raq.12231
[4] Wei L, Yu M, Zhong Y, et al. Spatial-spectral fusion based on conditional random fields for the fine classification of crops in UAV-borne hyperspectral remote sensing imagery[J]. Remote Sensing, 2019, 11(7):780.
doi: 10.3390/rs11070780
[5] Uddin M P, Al Mamun M, Ali Hossain M. PCA-based feature reduction for hyperspectral remote sensing image classification[J]. IETE Technical Review, 2021, 38(4):377-396.
doi: 10.1080/02564602.2020.1740615
[6] Papp L, van Leeuwen B, Szilassi P, et al. Monitoring invasive plant species using hyperspectral remote sensing data[J]. Land, 2021, 10(1):29.
doi: 10.3390/land10010029
[7] Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031
[8] Liu H, Luo J C, Huang B, et al. DE-net:Deep encoding network for building extraction from high-resolution remote sensing imagery[J]. Remote Sensing, 2019, 11(20):2380.
doi: 10.3390/rs11202380
[9] Zhu Q, Liao C, Hu H, et al. MAP-net:Multiple attending path neural network for building footprint extraction from remote sensed imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7):6169-6181.
doi: 10.1109/TGRS.2020.3026051
[10] Santara A, Mani K, Hatwar P, et al. BASS net:Band-adaptive spectral-spatial feature learning neural network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9):5293-5301.
doi: 10.1109/TGRS.2017.2705073
[11] Pan B, Shi Z, Xu X. R-VCANet:A new deep-learning-based hyperspectral image classification method[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(5):1975-1986.
doi: 10.1109/JSTARS.4609443
[12] Chen Y, Jiang H, Li C, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10):6232-6251.
doi: 10.1109/TGRS.2016.2584107
[13] Li Y, Zhang H, Shen Q. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing, 2017, 9(1):67.
doi: 10.3390/rs9010067
[14] 中华人民共和国环境保护部. HJ192—2015 生态环境状况评价技术规范[S]. 北京: 中国环境科学出版社, 2015.
Ministry of Environmental Protection of the People’s Republic of China. HJ192—2015 Technical Criterion for Ecosystem Status Evaluation[S]. Beijing: China Environmental Science Press, 2015.
[15] Ryschawy J, Dumont B, Therond O, et al. Review:An integrated graphical tool for analysing impacts and services provided by livestock farming[J]. animal, 2019, 13(8):1760-1772.
doi: 10.1017/S1751731119000351 pmid: 30827290
[16] 徐涵秋. 区域生态环境变化的遥感评价指数[J]. 中国环境科学, 2013, 33(5):889-897.
Xu H Q. A remote sensing index for assessment of regional ecological changes[J]. China Environmental Science, 2013, 33(5):889-897.
[17] Wang Q, Gao M, Zhang H. Agroecological efficiency evaluation based on multi-source remote sensing data in a typical county of the Tibetan Plateau[J]. Land, 2022, 11(4):561.
doi: 10.3390/land11040561
[18] 赵文慧, 李令军, 鹿海峰, 等. 2015—2017年北京及近周边平房燃煤散烧及其污染排放遥感测算[J]. 环境科学, 2019, 40(4):1594-1603.
Zhao W H, Li L J, Lu H F, et al. Estimation of coal consumption and the emission of related contaminants in the plain area around Beijing during 2015—2017[J]. Environmental Science, 2019, 40(4):1594-1603.
[19] 冯天时, 庞治国, 江威. 基于珠海一号高光谱卫星的巢湖叶绿素a浓度反演[J]. 光谱学与光谱分析, 2022, 42(8):2642-2648.
Feng T S, Pang Z G, Jiang W. Remote sensing retrieval of chlorophyll-a concentration in Lake Chaohu based on Zhuhai-1 hyperspectral satellite[J]. Spectroscopy and Spectral Analysis, 2022, 42(8):2642-2648.
[20] Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8):3907-3925.
doi: 10.5194/essd-13-3907-2021
[21] Zhang X, Liu L, Wu C, et al. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform[J]. Earth System Science Data, 2020, 12(3):1625-1648.
doi: 10.5194/essd-12-1625-2020
[22] Brown C F, Brumby S P, Guzder-Williams B, et al. Dynamic World,Near real-time global 10 m land use land cover mapping[J]. Scientific Data, 2022, 9:251.
doi: 10.1038/s41597-022-01307-4
[23] 陈智朗, 付振华, 朱紫阳, 等. 基于HRNet的高分辨率遥感影像建筑物变化信息提取[J]. 测绘通报, 2022(5):126-132.
doi: 10.13474/j.cnki.11-2246.2022.0153
Chen Z L, Fu Z H, Zhu Z Y, et al. HRNet-based extraction of building change information from high-resolution remote sensing images[J]. Bulletin of Surveying and Mapping, 2022(5):126-132.
doi: 10.13474/j.cnki.11-2246.2022.0153
[24] 张伯树, 张志华, 张洋. 改进的HRNet应用于路面裂缝分割与检测[J]. 测绘通报, 2022(3):83-89.
doi: 10.13474/j.cnki.11-2246.2022.0082
Zhang B S, Zhang Z H, Zhang Y. Improved HRNet applied to segmentation and detection of pavement cracks[J]. Bulletin of Surveying and Mapping, 2022(3):83-89.
doi: 10.13474/j.cnki.11-2246.2022.0082
[25] 粟日, 宋剑, 汪政, 等. 基于3D卷积神经网络的中耳疾病高分辨率CT图像辅助分类诊断模型的应用[J]. 中南大学学报(医学版), 2022, 47(8):1037-1048.
Su R, Song J, Wang Z, et al. Application of high resolution computed tomography image assisted classification model of middle ear diseases based on 3D-convolutional neural network[J]. Journal of Central South University (Medical Science), 2022, 47(8):1037-1048.
[26] 钟帆, 柏正尧. 采用动态残差图卷积的3D点云超分辨率[J]. 浙江大学学报(工学版), 2022, 56(11):2251-2259.
Zhong F, Bai Z Y. 3D point cloud super-resolution with dynamic residual graph convolutional networks[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(11):2251-2259.
[27] 郑宗生, 刘海霞, 王振华, 等. 改进3D-CNN的高光谱图像地物分类方法[J]. 自然资源遥感, 2023, 35(2):105-111.doi:10.6046/zrzyyg.2022100.
Zheng Z S, Liu H X, Wang Z H, et al. Improved 3D-CNN-based hyperspectral image classification method[J]. Remote Sensing for Natural Resources, 2023, 35(2):105-111.doi:10.6046/zrzyyg.2022100.
[28] 金永涛, 杨秀峰, 高涛, 等. 基于面向对象与深度学习的典型地物提取[J]. 国土资源遥感, 2018, 30(1):22-29.doi:10.6046/gtzyyg.2018.01.04.
Jin Y T, Yang X F, Gao T, et al. The typical object extraction method based on object-oriented and deep learning[J]. Remote Sensing for Land and Resources, 2018, 30(1):22-29.doi:10.6046/gtzyyg.2018.01.04.
[1] 王岩, 汪利诚, 武晋雯. 日平均气温遥感估算方法综述[J]. 自然资源遥感, 2023, 35(4): 1-8.
[2] 李新同, 史岚, 陈多妍. 基于深度学习的闽浙赣GPM降水产品降尺度方法[J]. 自然资源遥感, 2023, 35(4): 105-113.
[3] 王宁, 姜德才, 郑向向, 钟昶. 基于多源异构数据斜坡地质灾害隐患易发性评价——以深圳市龙岗区为例[J]. 自然资源遥感, 2023, 35(4): 122-129.
[4] 王月香, 陈婉婷, 朱瑜馨, 蔡安宁. 基于遥感的南京市城市扩张方向和类型的热效应[J]. 自然资源遥感, 2023, 35(4): 130-138.
[5] 刘晓民, 阿木古楞, 杨耀天, 刘勇. 鄂尔多斯市黄河流域旗县生态安全评价[J]. 自然资源遥感, 2023, 35(4): 139-148.
[6] 李娜, 董新丰, 王靖岚, 陈理, 甘甫平, 李彤彤, 张世凡. 面向地质应用的ZY-1 02D高光谱数据大气校正方法对比[J]. 自然资源遥感, 2023, 35(4): 17-24.
[7] 肖晖, 李惠堂, 顾约翰, 盛庆红. 质量引导下的最小二乘相位解缠算法[J]. 自然资源遥感, 2023, 35(4): 25-33.
[8] 田钊, 梁艾琳. 居民碳排放的遥感监测与分析[J]. 自然资源遥感, 2023, 35(4): 43-52.
[9] 杜晓川, 娄德波, 徐林刚, 范莹琳, 张琳, 李婉悦. 基于GF-2影像和随机森林算法的花岗伟晶岩提取[J]. 自然资源遥感, 2023, 35(4): 53-60.
[10] 张元涛, 潘蔚, 余长发. GF-5高光谱数据在铀矿勘查中的应用[J]. 自然资源遥感, 2023, 35(4): 61-70.
[11] 阳驰轶, 官海翔, 吴玮, 刘美玉, 李颖, 苏伟. 基于国产GF-3雷达影像的农田洪涝遥感监测方法[J]. 自然资源遥感, 2023, 35(4): 71-80.
[12] 余绍淮, 徐乔, 余飞. 联合光学和SAR遥感影像的山区公路滑坡易发性评价方法[J]. 自然资源遥感, 2023, 35(4): 81-89.
[13] 邓丁柱. 基于深度学习的多源卫星遥感影像云检测方法[J]. 自然资源遥感, 2023, 35(4): 9-16.
[14] 陈笛, 彭秋志, 黄培依, 刘雅璇. 采用注意力机制与改进YOLOv5的光伏用地检测[J]. 自然资源遥感, 2023, 35(4): 90-95.
[15] 王子浩, 李轶鲲, 李小军, 杨树文. 基于空间模糊C均值聚类和贝叶斯网络的抗噪声遥感图像变化检测[J]. 自然资源遥感, 2023, 35(4): 96-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发