Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (2): 39-48    DOI: 10.6046/zrzyyg.2023350
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
多云多雨区耕地撂荒多源遥感协同监测
肖文菊1(), 杨颖频1, 吴志峰1,2,3()
1.广州大学地理科学与遥感学院,广州 510006
2.南方海洋科学与工程广东省实验室(广州),广州 511458
3.自然资源部大湾区地理环境监测重点实验室,深圳 518060
Collaborative monitoring of abandoned arable land in cloudy and rainy areas based on multisource remote sensing data
XIAO Wenju1(), YANG Yingpin1, WU Zhifeng1,2,3()
1. School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China
2. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
3. MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area, Shenzhen 518060, China
全文: PDF(4979 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

多云多雨区面临气候湿热、雨季云污染导致的光学数据缺失等问题,基于单一光学数据难以实现撂荒地的精准监测。该文探索了一种适合多云多雨区的撂荒地遥感监测方法。通过协同光学与合成孔径雷达(synthetic aperture Radar,SAR)多源遥感数据,提取植被在不同时相的光学特征和SAR特征,基于GINI系数评价特征重要性,采用随机森林分类器,实现了2021年广东省揭西县的撂荒地空间分布制图。实验结果表明,该方法在多云多雨区的撂荒地识别中可达到较高的识别精度,总体精度达到87.0%; 相较于仅基于光学特征和仅基于SAR特征的分类方法,总体精度分别提高了6.7和13.8百分点。经分析,归一化植被指数、土壤调节植被指数、极化熵、归一化水体植被指数和反熵对于撂荒地识别均发挥重要作用; 2月、4月、6月、8月、12月均为区分撂荒地和非撂荒地的关键时期。该研究构建了多源特征、多时相协同的撂荒地监测模型,为多云多雨区的撂荒地监测研究提供了技术支撑。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖文菊
杨颖频
吴志峰
关键词 撂荒地多源遥感多云多雨区耕地时序特征    
Abstract

In cloudy and rainy areas, the humid and hot climate and cloud contamination during the rainy season often cause the loss of optical data. Hence, optical data alone fail to enable the accurate monitoring of abandoned land. This study proposed a method for monitoring abandoned land in cloudy and rainy areas based on multisource remote sensing data. By integrating optical and synthetic aperture Radar (SAR) remote sensing data, this study extracted the multitemporal optical and SAR-derived features of vegetation and assessed their importance using the GINI index. Employing the random forest classifier, this study mapped the spatial distribution of abandoned land in Jiexi County in 2021. The results show that the proposed method achieved a relatively high accuracy in identifying abandoned land in cloudy and rainy areas, yielding an overall accuracy of 87.0%. This value represents an improvement of 6.7 and 13.8 percentage points, respectively, compared to the results derived solely from optical and SAR remote sensing features. The analysis reveals that the normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), polarization entropy, normalized difference water index (NDWI), and anti-entropy are crucial for identifying abandoned land. Additionally, key months for distinguishing abandoned from non-abandoned land include February, April, June, August, and December. This study establishes a monitoring model for abandoned land based on multisource features and multitemporal phases, providing technical support for monitoring abandoned land in cloudy and rainy areas.

Key wordsabandoned land    multisource remote sensing    cloudy and rainy areas    arable land    temporal features
收稿日期: 2023-11-14      出版日期: 2025-05-09
ZTFLH:  TP79  
基金资助:广州大学研究生创新能力培养资助计划“多源遥感协同的撂荒地监测研究”(2022GDJC-M14);国家自然科学基金项目“华南地区甘蔗种植分布早期遥感精准监测研究”(42201413);国家自然科学基金-广东联合基金重点项目“粤港澳大湾区湿地资源遥感监测及其生态功能评估研究”(U1901219)
通讯作者: 吴志峰(1969-),男,博士,教授,博士生导师,研究方向为生态遥感、自然资源监测与评估。Email: zfwu@gzhu.edu.cn
作者简介: 肖文菊(1998-),女,硕士研究生,研究方向为农业遥感。Email: Xiaowj_stu@163.com
引用本文:   
肖文菊, 杨颖频, 吴志峰. 多云多雨区耕地撂荒多源遥感协同监测[J]. 自然资源遥感, 2025, 37(2): 39-48.
XIAO Wenju, YANG Yingpin, WU Zhifeng. Collaborative monitoring of abandoned arable land in cloudy and rainy areas based on multisource remote sensing data. Remote Sensing for Natural Resources, 2025, 37(2): 39-48.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023350      或      https://www.gtzyyg.com/CN/Y2025/V37/I2/39
Fig.1  研究区地理位置及样本点空间分布情况
数据类型 时间 数据类型 时间
Sentinel-1 2021-01-09 Sentinel-2 2021-01-01
Sentinel-1 2021-02-26 Sentinel-2 2021-02-10
Sentinel-1 2021-03-22 Sentinel-2 2021-03-12
Sentinel-1 2021-04-15 Sentinel-2 2021-04-11
Sentinel-1 2021-05-09 Sentinel-2 2021-05-11
Sentinel-1 2021-06-03 Sentinel-2 2021-06-10
Sentinel-1 2021-07-20 Sentinel-2 2021-07-10
Sentinel-1 2021-08-25 Sentinel-2 2021-08-19
Sentinel-1 2021-09-18 Sentinel-2 2021-09-18
Sentinel-1 2021-10-12 Sentinel-2 2021-10-18
Sentinel-1 2021-11-17 Sentinel-2 2021-11-17
Sentinel-1 2021-12-23 Sentinel-2 2021-12-07
Tab.1  时间序列数据集
Fig.2  撂荒地和非撂荒地示例
Fig.3  耕地地块提取结果
Fig.4  技术流程图
Fig.5  多源特征时序曲线
Fig.6  多源特征筛选结果
Fig.7  模型误差曲线
特征 类别 撂荒地 水稻 其他作物 总计 制图精度/% 用户精度/% 总体精度/%
SAR特征 撂荒地 141 18 26 185 76.5 73.1 73.2
水稻 15 144 28 187 77.1 77.8
其他作物 37 23 116 176 65.7 68.2
总计 193 185 170 548
光学特征 撂荒地 160 3 18 181 88.7 73.9 80.3
水稻 7 171 10 183 93.2 85.2
其他作物 23 15 146 184 79.5 81.2
总计 190 189 174 548
SAR特征+
光学特征
撂荒地 160 3 18 181 88.7 84.2 87.0
水稻 7 171 10 183 93.2 90.5
其他作物 23 15 146 184 79.5 83.9
总计 190 189 174 548
Tab.2  不同特征组合下的混淆矩阵
类别 撂荒地 水稻 其他作物 总计 制图精度/%
撂荒地 137 26 18 181 75.69
水稻 21 155 22 198 78.27
其他作物 19 27 123 169 72.78
总计 177 208 163 548
用户精度/% 77.40 74.52 75.46
总体精度/% 75.73
Tab.3  基于单时相、多源遥感特征分类方法的精度验证混淆矩阵
Fig.8  撂荒地、水稻和其他作物提取结果
[1] 李升发, 李秀彬. 耕地撂荒研究进展与展望[J]. 地理学报, 2016, 71(3):370-389.
doi: 10.11821/dlxb201603002
Li S F, Li X B. Progress and prospect on farmland abandonment[J]. Acta Geographica Sinica, 2016, 71(3):370-389.
doi: 10.11821/dlxb201603002
[2] 陈欣怡, 郑国全. 国内外耕地撂荒研究进展[J]. 中国人口·资源与环境, 2018, 28(s2):37-41.
Chen X Y, Zheng G Q. Research progress of cultivated land abandonment at home and abroad[J]. China Population,Resources and Environment, 2018, 28(s2):37-41.
[3] 杨通, 郭旭东, 于潇, 等. 撂荒地监测方法与生态影响述评[J]. 生态环境学报, 2020, 29(8):1683-1692.
doi: 10.16258/j.cnki.1674-5906.2020.08.021
Yang T, Guo X D, Yu X, et al. Review on monitoring methods and ecological impact of abandoned agricultural land[J]. Ecology and Environmental Sciences, 2020, 29(8):1683-1692.
[4] 周小迦. 丘陵地带耕地撂荒遥感监测应用研究[J]. 自然资源遥感, 2024, 36(1):235-241.doi:10.6046/zrzyyg.2022435.
Zhou X J. Application of remote sensing monitoring in abandoned arable land in a hilly region[J]. Remote Sensing for Natural Resources, 2024, 36(1):235-241.doi:10.6046/zrzyyg.2022435.
[5] 罗雅红, 龚建周, 李天翔, 等. 基于MaxEnt模型提取撂荒耕地——以四川省武胜县为例[J]. 农业资源与环境学报, 2021, 38(6):1084-1093.
Luo Y H, Gong J Z, Li T X, et al. Extraction of abandoned farmland based on MaxEnt model:A case study of Wusheng County,Sichuan Province[J]. Journal of Agricultural Resources and Environment, 2021, 38(6):1084-1093.
[6] 杨颖频, 吴志峰, 骆剑承, 等. 时空协同的地块尺度作物分布遥感提取[J]. 农业工程学报, 2021, 37(7):166-174.
Yang Y P, Wu Z F, Luo J C, et al. Parcel-based crop distribution extraction using the spatiotemporal collaboration of remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(7):166-174.
[7] 钱丽沙, 姜浩, 陈水森, 等. 基于时空滤波Sentinel-1时序数据的田块尺度岭南作物分布提取[J]. 农业工程学报, 2022, 38(5):158-166.
Qian L S, Jiang H, Chen S S, et al. Extracting field-scale crop distribution in Lingnan using spatiotemporal filtering of Sentinel-1 time-series data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(5):158-166.
[8] 马丽, 徐新刚, 刘良云, 等. 基于多时相NDVI及特征波段的作物分类研究[J]. 遥感技术与应用, 2008, 23(5):520-524.
Ma L, Xu X G, Liu L Y, et al. Study on crops classification based on multi-temporal NDVI and characteristic bands[J]. Remote Sensing Technology and Application, 2008, 23(5):520-524.
[9] 刘杰, 刘吉凯, 安晶晶, 等. 基于时序Landsat8 OLI多特征与随机森林算法的作物精细分类研究[J]. 干旱地区农业研究, 2020, 38(3):281-288,298.
Liu J, Liu J K, An J J, et al. Precise crop classification based on multi-features from time-series Landsat8 OLI images and random forest algorithm[J]. Agricultural Research in the Arid Areas, 2020, 38(3):281-288,298.
[10] 林忠辉, 莫兴国. NDVI时间序列谐波分析与地表物候信息获取[J]. 农业工程学报, 2006, 22(12):138-144.
Lin Z H, Mo X G. Phenologies from harmonics analysis of AVHRR NDVI time series[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(12):138-144.
[11] 杜保佳, 张晶, 王宗明, 等. 应用Sentinel-2A NDVI时间序列和面向对象决策树方法的农作物分类[J]. 地球信息科学学报, 2019, 21(5):740-751.
doi: 10.12082/dqxxkx.2019.180412
Du B J, Zhang J, Wang Z M, et al. Crop mapping based on Sentinel-2A NDVI time series using object-oriented classification and decision tree model[J]. Journal of Geo-Information Science, 2019, 21(5):740-751.
[12] 王玲玉, 周忠发, 赵馨, 等. 基于地块级时序遥感的喀斯特石漠化地区撂荒地时空演变[J]. 水土保持学报, 2020, 34(1):92-99,107.
Wang L Y, Zhou Z F, Zhao X, et al. Spatiotemporal evolution of Karst rocky desertification abandoned cropland based on farmland-parcels time-series remote sensing[J]. Journal of Soil and Water Conservation, 2020, 34(1):92-99,107.
[13] 宋宪强, 梁钊雄, 周红艺, 等. 基于决策树与时序NDVI变化检测的耕地撂荒遥感监测——以四川省凉山州普格县为例[J]. 山地学报, 2021, 39(6):912-921.
Song X Q, Liang Z X, Zhou H Y, et al. An updated method to monitor the changes in spatial distribution of abandoned land based on decision tree and time series NDVI change detection:A case study of Puge County,Liangshan Prefecture,Sichuan Province,China[J]. Mountain Research, 2021, 39(6):912-921.
[14] 杨通, 郭旭东, 于潇, 等. 基于多源数据的村域撂荒驱动力分析及模型模拟[J]. 干旱区资源与环境, 2019, 33(11):62-69.
Yang T, Guo X D, Yu X, et al. Driving force and model simulation of farmland abandonment in village scale based on multisource data[J]. Journal of Arid Land Resources and Environment, 2019, 33(11):62-69.
[15] Meijninger W, Elbersen B, van Eupen M, et al. Identification of early abandonment in cropland through radar-based coherence data and application of a Random-Forest model[J]. GCB Bioenergy, 2022, 14(7):735-755.
[16] 王晨丞, 王永前, 王利花. 基于SAR纹理信息的农作物识别研究——以农安县为例[J]. 遥感技术与应用, 2021, 36(2):372-380.
doi: 10.11873/j.issn.1004-0323.2021.2.0372
Wang C C, Wang Y Q, Wang L H. Crop identification based on SAR texture information:A case study of Nong’an County[J]. Remote Sensing Technology and Application, 2021, 36(2):372-380.
[17] Luo C, Qi B, Liu H, et al. Using time series sentinel-1 images for object-oriented crop classification in Google Earth Engine[J]. Remote Sensing, 2021, 13(4):561.
[18] Xu L, Zhang H, Wang C, et al. Crop classification based on temporal information using sentinel-1 SAR time-series data[J]. Remote Sensing, 2018, 11(1):53.
[19] Yang Y, Wu Z, Xiao W, et al. Abandoned land mapping based on spatiotemporal features from PolSAR data via deep learning methods[J]. Remote Sensing, 2023, 15(16):3942.
[20] 张昊, 高小红, 史飞飞, 等. 基于Sentinel-2 MSI与Sentinel-1 SAR相结合的黄土高原西部撂荒地提取——以青海民和县为例[J]. 自然资源遥感, 2022, 34(4):144-154.
Zhang H, Gao X H, Shi F F, et al. Sentinel-2 MSI and Sentinel-1 SAR based information extraction of abandoned land in the western Loess Plateau:A case study of Minhe County in Qinghai[J]. Remote Sensing for Natural Resources, 2022, 34(4):144-154.
[21] Bucha T, Papčo J, Sačkov I, et al. Woody above-ground biomass estimation on abandoned agriculture land using Sentinel-1 and Sentinel-2 data[J]. Remote Sensing, 2021, 13(13):2488.
[22] 肖国峰, 朱秀芳, 侯陈瑶, 等. 撂荒耕地的提取与分析——以山东省庆云县和无棣县为例[J]. 地理学报, 2018, 73(9):1658-1673.
doi: 10.11821/dlxb201809004
Xiao G F, Zhu X F, Hou C Y, et al. Extraction and analysis of abandoned farmland:A case study of Qingyun and Wudi Counties in Shandong Province[J]. Acta Geographica Sinica, 2018, 73(9):1658-1673.
[23] Song W. Mapping cropland abandonment in mountainous areas using an annual land-use trajectory approach[J]. Sustainability, 2019, 11(21):5951.
[24] 刘瑞清, 李加林, 孙超, 等. 基于Sentinel-2遥感时间序列植被物候特征的盐城滨海湿地植被分类[J]. 地理学报, 2021, 76(7):1680-1692.
doi: 10.11821/dlxb202107008
Liu R Q, Li J L, Sun C, et al. Classification of Yancheng coastal wetland vegetation based on vegetation phenological characteristics derived from Sentinel-2 time-series[J]. Acta Geographica Sinica, 2021, 76(7):1680-1692.
doi: 10.11821/dlxb202107008
[25] Portalés-Julià E, Campos-Taberner M, García-Haro F J, et al. Assessing the Sentinel-2 capabilities to identify abandoned crops using deep learning[J]. Agronomy, 2021, 11(4):654.
[26] Luo C, Liu H J, Lu L P, et al. Monthly composites from Sentinel-1 and Sentinel-2 images for regional major crop mapping with Google Earth Engine[J]. Journal of Integrative Agriculture, 2021, 20(7):1944-1957.
[27] 石娴, 明艳芳, 刘春秀, 等. 时序影像在冬小麦种植区提取中的应用分析[J]. 无线电工程, 2021, 51(12):1567-1576.
Shi X, Ming Y F, Liu C X, et al. Analysis on the application of time series image in extraction of winter wheat planting area[J]. Radio Engineering, 2021, 51(12):1567-1576.
[1] 刘超兵, 甘淑, 袁希平, 尚华胜. 级联改进DexiNed和DeepLabv3+网络的坡耕地提取[J]. 自然资源遥感, 2025, 37(2): 49-55.
[2] 余姝辰, 邱罗, 贺秋华, 金小燕, 李嘉宝, 余德清. 基于多源遥感的洞庭湖洲滩时空演变研究[J]. 自然资源遥感, 2025, 37(2): 228-234.
[3] 庄会富, 王鹏, 苏亚男, 张祥, 范洪冬. 基于多源时序SAR数据的涿州洪涝淹没动态监测[J]. 自然资源遥感, 2024, 36(4): 218-228.
[4] 蒋瑞瑞, 甘甫平, 郭艺, 闫柏琨. 土壤水分多源卫星遥感联合反演研究进展[J]. 自然资源遥感, 2024, 36(1): 1-13.
[5] 周小迦. 丘陵地带耕地撂荒遥感监测应用研究[J]. 自然资源遥感, 2024, 36(1): 235-241.
[6] 卢献健, 张焕铃, 晏红波, 黎振宝, 郭子扬. 协同Sentinel-1/2多特征优选的甘蔗提取方法[J]. 自然资源遥感, 2024, 36(1): 86-94.
[7] 王煜淼, 李胜, 东春宇, 杨刚. 多特征参数支持的红树林遥感信息提取——以广东省为例[J]. 自然资源遥感, 2024, 36(1): 95-102.
[8] 邓丁柱. 基于深度学习的多源卫星遥感影像云检测方法[J]. 自然资源遥感, 2023, 35(4): 9-16.
[9] 钟骁勇, 李洪义, 郭冬艳, 谢模典, 赵婉如, 胡碧峰. 基于多源环境变量和随机森林模型的江西省耕地土壤pH值空间预测[J]. 自然资源遥感, 2023, 35(4): 178-185.
[10] 张昊, 高小红, 史飞飞, 李润祥. 基于Sentinel-2 MSI与Sentinel-1 SAR相结合的黄土高原西部撂荒地提取——以青海民和县为例[J]. 自然资源遥感, 2022, 34(4): 144-154.
[11] 王宇, 周忠发, 王玲玉, 骆剑承, 黄登红, 张文辉. 基于Sentinel-1的喀斯特高原山区种植结构空间分异研究[J]. 自然资源遥感, 2022, 34(4): 155-165.
[12] 张淑, 周忠发, 王玲玉, 陈全, 骆剑承, 赵馨. 多时相SAR的喀斯特山区耕地表层土壤水分反演[J]. 自然资源遥感, 2022, 34(3): 154-163.
[13] 宋奇, 冯春晖, 高琪, 王明玥, 吴家林, 彭杰. 阿拉尔垦区近30年耕地变化及其驱动因子分析[J]. 国土资源遥感, 2021, 33(2): 202-212.
[14] 董家集, 任华忠, 郑逸童, 聂婧, 孟晋杰, 秦其明. 基于多源遥感数据的城市环境宜居性研究——以北京市为例[J]. 国土资源遥感, 2020, 32(3): 165-172.
[15] 王玲玉, 陈全, 吴跃, 周忠发, 但雨生. 基于地块级时序NDVI的喀斯特山区撂荒地特征精准识别[J]. 国土资源遥感, 2020, 32(3): 23-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发