Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (4): 68-76    DOI: 10.6046/zrzyyg.2024083
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
国产高分辨率热红外数据城市地表温度反演及其应用
李经纶1,2,3(), 陈虹4, 李坤1,2, 窦显辉5, 赵航6, 曾健6, 张学文6, 钱永刚1,2()
1.中国科学院空天信息创新研究院数字地球重点实验室, 北京 100094
2.可持续发展大数据国际研究中心, 北京 100094
3.中国科学院大学, 北京 100049
4.中国自然资源航空物探遥感中心, 北京 100083
5.自然资源部国土卫星遥感应用中心,北京 100048
6.中国资源卫星应用中心, 北京 100094
A method for inversion of urban land surface temperature and its application in domestic high-resolution thermal infrared data
LI Jinglun1,2,3(), CHEN Hong4, LI Kun1,2, DOU Xianhui5, ZHAO Hang6, ZENG Jian6, ZHANG Xuewen6, QIAN Yonggang1,2()
1. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
2. International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
4. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China
5. Land Satellite Remote Sensing Application Center, Ministry of Natural Resources, Beijing 100048, China
6. China Centre for Resources Satellite Data and Application, Beijing 100049, China
全文: PDF(4507 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 与自然地表相比,城市地表的几何结构更加复杂,像元内部的多次散射效应和邻近效应对城市地表温度(land surface temperature, LST)反演结果的影响不可忽视。该文提出了一种耦合机器学习和改进的温度/发射率分离(temperature and emissivity separation, TES)的城市 LST 反演算法,并将该方法应用于我国SDGSAT-1热红外数据中。该算法主要包括3个方面: 首先,基于XGBoost(eXtreme Gradient Boosting)算法反演SDGSAT-1城市冠层亮温; 其次,考虑城市几何结构,提出了一种基于天空可视因子(sky view factor, SVF)的TES算法,实现了城市LST的高精度反演; 最后,评估了算法的准确性,并将该方法应用于北京城区。结果显示,使用 XGBoost 算法和分裂窗算法均方根误差(root mean squared error, RMSE)分别约为 0.2 K 和 1.2 K; 在有/无水汽数据支持下,城市LST RMSE分别为0.36 K和0.73 K,3个波段的地表发射率(land surface emissivity,LSE)RMSE分别为0.020/0.026,0.018/0.023和0.020/0.023。改进前后的TES算法反演结果差值范围约为0~1.86K。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李经纶
陈虹
李坤
窦显辉
赵航
曾健
张学文
钱永刚
关键词 SDGSAT-1卫星遥感反演城市地表温度天空可视因子机器学习    
Abstract

Compared to natural surfaces, urban surfaces have more complex geometric structures, leading to significant impacts of the multiple scattering effect within pixels and the neighborhood effect on the inversion results of urban land surface temperature (LST). This study proposed a novel urban LST inversion algorithm that integrates machine learning and an enhanced temperature and emissivity separation (TES) method. Finally, the proposed algorithm was applied to China’s SDGSAT-1 thermal infrared data. The algorithm comprises three key steps: First, the inversion of urban canopy brightness temperature from SDGSAT-1 data was conducted using the eXtreme Gradient Boosting (XGBoost) algorithm. Second, an enhanced TES algorithm based on the sky view factor (SVF) was developed to account for urban geometry, enabling high-precision urban LST inversion. Third, the accuracy of the inversion algorithm was assessed and applied to the urban area of Beijing. The results demonstrate that inversion using an XGBoost algorithm and a split-window algorithm yielded root mean squared errors (RMSEs) of approximately 0.2 K and 1.2 K, respectively. The LST RMSEs with and without available water vapor data were determined at 0.36 K and 0.73 K, respectively; and the LSE RMSEs under three bands were 0.020/0.026, 0.018/0.023, and 0.020/0.023, respectively. The differences in the LST inversion results derived using the original and improved TES algorithm ranged from 0 to 1.86 K.

Key wordsSDGSAT-1    remote sensing retrieval    urban land surface temperature (LST)    sky view factor (SVF)    machine learning
收稿日期: 2024-02-28      出版日期: 2025-09-03
ZTFLH:  TP79  
基金资助:国家自然科学基金重点基金项目“融合多源异类数据估算地球表层特征参量: 机理-学习耦合模型”(42130108);国家自然科学基金面上基金项目“基于中红外高光谱数据的连续发射波谱反演方法研究”(42371375)
作者简介: 李经纶(1999-),男,硕士研究生, 研究方向为城市地表温度反演。Email: lijinglun21@mails.ucas.ac.cn
引用本文:   
李经纶, 陈虹, 李坤, 窦显辉, 赵航, 曾健, 张学文, 钱永刚. 国产高分辨率热红外数据城市地表温度反演及其应用[J]. 自然资源遥感, 2025, 37(4): 68-76.
LI Jinglun, CHEN Hong, LI Kun, DOU Xianhui, ZHAO Hang, ZENG Jian, ZHANG Xuewen, QIAN Yonggang. A method for inversion of urban land surface temperature and its application in domestic high-resolution thermal infrared data. Remote Sensing for Natural Resources, 2025, 37(4): 68-76.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024083      或      https://www.gtzyyg.com/CN/Y2025/V37/I4/68
项目 指标
幅宽/km 300
波段范围/μm 8~10.5
10.3~11.3
11.5~12.5
空间分辨率/m 30
Tab.1  SDGSAT-1卫星热红外光谱仪技术指标
Fig.1  北京市城区DSM
Fig.2  城市地表温度反演技术路线图
Fig.3  不同 S V F i n下的 ε m i n - M M D散点图
S V F i n 系数
a b c RMSE
0.1 0.996 5 1.229 9 1.028 4 0.001 6
0.2 0.993 1 1.164 0 1.021 3 0.003 2
0.3 0.989 8 1.118 3 1.014 4 0.004 7
0.4 0.986 4 1.082 3 1.007 9 0.006 2
0.5 0.983 2 1.052 2 1.001 7 0.007 6
0.6 0.980 0 1.026 4 0.995 7 0.009 1
0.7 0.976 8 1.003 6 0.989 9 0.010 5
0.8 0.973 6 0.983 4 0.984 4 0.011 9
0.9 0.970 5 0.965 1 0.979 0 0.013 2
1.0 0.967 4 0.948 4 0.973 9 0.014 6
Tab.2  不同SVFin值下 MMD 模块的系数和发射率RMSE
Fig.4  XGBoost与SW算法结果对比
T g i T g 1 T g 2 T g 3
波段组合 B1&B2 3T 3T+WVC B1&B2 3T 3T+WVC B1&B2 3T 3T+WVC
RMSE/K 1.21 0.88 0.21 1.13 0.68 0.19 1.11 0.85 0.19
Tab.3  XGBoost和SW算法最佳波段组合结果对比
Fig.5  实际与反演LST/LSE之差累计概率分布图
Fig.6  3个SDGSAT-1热红外波段的LSE RMSE
Fig.7  不同 S V F i n S V F a d j下TES算法和XGB-TES算法结果之差
Fig.8  北京市LSTSVFin结果图
Fig.9  温差箱线图
[1] Vidal A, Pinglo F, Durand H, et al. Evaluation of a temporal fire risk index in Mediterranean forests from NOAA thermal IR[J]. Remote Sensing of Environment, 1994, 49(3):296-303.
[2] Dhara C. Constraining global changes in temperature and precipitation from observable changes in surface radiative heating[J]. Geophysical Research Letters, 2020, 47(9):e2020GL087576.
[3] Li K, Qian Y, Wang N, et al. A four-component parameterized directional thermal radiance model for row canopies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5000615.
[4] Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79(2/3):213-224.
[5] Li Z L, Wu H, Duan S B, et al. Satellite remote sensing of global land surface temperature:Definition,methods,products,and applications[J]. Reviews of Geophysics, 2023, 61(1):e2022RG-000777.
[6] Bojinski S, Verstraete M, Peterson T C, et al. The concept of essential climate variables in support of climate research,applications,and policy[J]. Bulletin of the American Meteorological Society, 2014, 95(9):1431-1443.
[7] Qin Z, Karnieli A, Berliner P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region[J]. International Journal of Remote Sensing, 2001, 22(18):3719-3746.
[8] Becker F, Li Z L. Towards a local split window method over land surfaces[J]. International Journal of Remote Sensing, 1990, 11(3):369-393.
[9] Gillespie A, Rokugawa S, Matsunaga T, et al. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4):1113-1126.
[10] Ma C, Qian Y, Li K, et al. Temperature and emissivity retrieval from hyperspectral thermal infrared data using dictionary-based sparse representation for emissivity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:5002016.
[11] 李召良, 段四波, 唐伯惠, 等. 热红外地表温度遥感反演方法研究进展[J]. 遥感学报, 2016, 20(5):899-920.
Li Z L, Duan S B, Tang B H, et al. Review of methods for land surface temperature derived from thermal infrared remotely sensed data[J]. Journal of Remote Sensing, 2016, 20(5):899-920.
[12] Chen S, Ren H, Ye X, et al. Geometry and adjacency effects in urban land surface temperature retrieval from high-spatial-resolution thermal infrared images[J]. Remote Sensing of Environment, 2021, 262:112518.
[13] Ru C, Duan S B, Jiang X G, et al. An extended SW-TES algorithm for land surface temperature and emissivity retrieval from ECOSTRESS thermal infrared data over urban areas[J]. Remote Sensing of Environment, 2023, 290:113544.
[14] Chen L, Wang X, Cai X, et al. Seasonal variations of daytime land surface temperature and their underlying drivers over Wuhan,China[J]. Remote Sensing, 2021, 13(2):323.
[15] Yang J, Wong M S, Menenti M, et al. Modeling the effective emissivity of the urban canopy using sky view factor[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105:211-219.
[16] Yang J, Wong M S, Menenti M, et al. Development of an improved urban emissivity model based on sky view factor for retrieving effective emissivity and surface temperature over urban areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 122:30-40.
[17] Chen T, Guestrin C. XGBoost:A scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco California USA.ACM, 2016:785-794.
[18] Yu B, Chen F, Ye C, et al. Temporal expansion of the nighttime light images of SDGSAT-1 satellite in illuminating ground object extraction by joint observation of NPP-VIIRS and sentinel-2A images[J]. Remote Sensing of Environment, 2023, 295:113691.
[19] Guo H, Dou C, Chen H, et al. SDGSAT-1:The world’s first scientific satellite for sustainable development goals[J]. Science Bulletin, 2023, 68(1):34-38.
[20] Watson I D, Johnson G T. Graphical estimation of sky view-factors in urban environments[J]. Journal of Climatology, 1987, 7(2):193-197.
[21] Steger C R, Steger B, Schär C. HORAYZON v1.2:An efficient and flexible ray-tracing algorithm to compute horizon and sky view factor[J]. Geoscientific Model Development, 2022, 15(17):6817-6840.
[22] Berk A, Anderson G, Acharya P. MODTRAN (R) 5.3.2 User’s Manual[J]. Spectral Sciences,Burlington,MA, 2013.
[23] Zakšek K, Oštir K, Kokalj Ž. Sky-view factor as a relief visualization technique[J]. Remote Sensing, 2011, 3(2):398-415.
[24] Hu L, Wang C, Ye Z, et al. Estimating gaseous pollutants from bus emissions:A hybrid model based on GRU and XGBoost[J]. Science of the Total Environment, 2021, 783:146870.
[25] Zheng X, Li Z L, Wang T, et al. Determination of global land surface temperature using data from only five selected thermal infrared channels:Method extension and accuracy assessment[J]. Remote Sensing of Environment, 2022, 268:112774.
[1] 陈民, 彭栓, 王涛, 吴雪芳, 刘润璞, 陈玉烁, 方艳茹, 阳平坚. 基于资源1号02D高光谱图像湿地水体分类方法对比——以白洋淀为例[J]. 自然资源遥感, 2025, 37(3): 133-141.
[2] 陈薪, 施国萍. 基于机器学习的FY-4A气溶胶光学厚度反演[J]. 自然资源遥感, 2025, 37(1): 213-220.
[3] 胡博洋, 孙建国, 张倩, 杨云睿. 用于植被变化归因的区域机器学习残差趋势法[J]. 自然资源遥感, 2025, 37(1): 46-53.
[4] 张冬韵, 吴田军, 李曼嘉, 郭逸飞, 骆剑承, 董文. 地块尺度农作物遥感分类及其不确定性分析[J]. 自然资源遥感, 2024, 36(4): 124-134.
[5] 张春桂, 彭继达. 基于气象和遥感的空气清新度监测技术研究[J]. 自然资源遥感, 2024, 36(3): 163-173.
[6] 王煜淼, 李胜, 东春宇, 杨刚. 多特征参数支持的红树林遥感信息提取——以广东省为例[J]. 自然资源遥感, 2024, 36(1): 95-102.
[7] 王岩, 汪利诚, 武晋雯. 日平均气温遥感估算方法综述[J]. 自然资源遥感, 2023, 35(4): 1-8.
[8] 黄晓宇, 王雪梅, 卡吾恰提·白山. 基于Landsat8 OLI影像干旱区绿洲土壤含盐量反演[J]. 自然资源遥感, 2023, 35(1): 189-197.
[9] 李显风, 袁正国, 邓卫华, 杨立苑, 周雪莹, 胡丽丽. 融合多种机器学习模型的2 m气温空间降尺度方法[J]. 自然资源遥感, 2023, 35(1): 57-65.
[10] 钞振华, 车明亮, 侯胜芳. 基于时间序列遥感数据植被物候信息提取软件发展现状[J]. 自然资源遥感, 2021, 33(4): 19-25.
[11] 范嘉智, 罗宇, 谭诗琪, 马雯, 张弘豪, 刘富来. 基于FY-3C/MWRI的湖南省地表温度遥感反演评价[J]. 国土资源遥感, 2021, 33(1): 249-255.
[12] 左家旗, 王泽根, 边金虎, 李爱农, 雷光斌, 张正健. 地表不透水面比例遥感反演研究综述[J]. 国土资源遥感, 2019, 31(3): 20-28.
[13] 周询, 王跃宾, 刘素红, 于佩鑫, 王西凯. 一种遥感影像自动识别耕地类型的机器学习算法[J]. 国土资源遥感, 2018, 30(4): 68-73.
[14] 李军, 董恒, 王祥, 游林. 基于最优插值的土壤含水量遥感反演缺失数据插补[J]. 国土资源遥感, 2018, 30(2): 45-52.
[15] 孔金玲, 杨晶, 孙晓明, 杨姝, 柳富田, 杜东. 多光谱遥感影像大气校正与悬沙浓度反演——以曹妃甸近岸海域为例[J]. 国土资源遥感, 2016, 28(3): 130-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发