Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (4): 12-20    DOI: 10.6046/zrzyyg.2024104
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
面向复杂矿区的Stacking技术辅助DS-InSAR地表形变监测方法
李志1(), 张书毕1(), 李鸣庚2, 陈强3, 卞和方1, 李世金1, 高延东1, 张艳锁1, 张帝1
1.中国矿业大学环境与测绘学院,徐州 221116
2.中铁上海设计院集团有限公司,上海 200040
3.兖矿能源集团股份有限公司济宁三号煤矿,济宁 272000
Stacking-assisted DS-InSAR method for monitoring surface deformations in complex mining areas
LI Zhi1(), ZHANG Shubi1(), LI Minggeng2, CHEN Qiang3, BIAN Hefang1, LI Shijin1, GAO Yandong1, ZHANG Yansuo1, ZHANG Di1
1. School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
2. China Railway Shanghai Design Institute Group Corporation Limited, Shanghai 200040, China
3. Yankuang energy Group Company Limited Jining No.3 coal mine, Jining 272000, China
全文: PDF(4768 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

合成孔径雷达干涉测量(interferometric synthetic aperture Radar, InSAR)技术在矿区植被覆盖密集且存在大梯度地表形变复杂环境下进行监测时,存在监测点数量不足、监测精度不高等问题。针对这些问题,该文提出一种Stacking技术辅助下的改进分布式目标InSAR(distributed scatterer InSAR, DS-InSAR)方法。该方法采用置信区间假设检验算法识别同质像元并基于相位三角剖分算法完成相位优化,随后去除先期利用Stacking技术模拟的线性形变相位获取残余相位,进而稀疏形变相位条纹,提高后续DS-InSAR处理框架中时空滤波与三维解缠结果的精确性,最终补偿模拟相位获得完整形变场。通过处理2015年10月—2016年3月期间覆盖新巨龙煤矿的Sentinel-1A合成孔径雷达(synthetic aperture Radar,SAR)影像,解译了该时段内矿区时序地表形变特征,得到以下结论: 监测期间,矿区存在3处显著形变,雷达视线向最大累积形变量达到-313 mm;所提方法相较常规短基线集干涉测量(small baseline subset InSAR,SBAS-InSAR)技术能够反演出分布更加均匀的监测点位信息,其密度约是SBAS-InSAR的12.9倍;对比水准数据的均方根误差(root mean squared error,RMSE)约为6.82 mm,精度较SBAS-InSAR提高了约3.0 mm。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李志
张书毕
李鸣庚
陈强
卞和方
李世金
高延东
张艳锁
张帝
关键词 StackingDS-InSAR地表形变残余相位矿区监测    
Abstract

Interferometric Synthetic Aperture Radar (InSAR) faces the challenges of the insufficient number of monitoring points and low monitoring accuracy when applied to complex environments with dense vegetation and large-gradient surface deformation in a mining area. To address these challenges, this study proposed an improved distributed scatterer InSAR (DS-InSAR) method assisted by stacking technology. This method identified statistically homogenous pixels using a confidence interval hypothesis test and achieved phase optimization utilizing a phase triangulation algorithm. Subsequently, the residual phases were derived by removing the linear deformation phases determined via stacking-based simulation. This step contributed to sparse deformation phase fringes, thereby enhancing the accuracy of spatiotemporal filtering and three-dimensional phase unwrapping within the subsequent DS-InSAR processing framework. Finally, the simulated phases were compensated, and thus complete deformation fields were determined. By processing Sentinel-1A SAR images covering the Xinjulong Coal Mine from October 2015 to March 2016, this study interpreted the time-series surface deformation characteristics in the mining area during this period. The findings revealed three significant deformation sites in the mining area, with a maximum cumulative radar line-of-sight (LOS) deformation of up to -313 mm. Compared to conventional small Baseline Subset (SBAS) InSAR, the proposed method yielded more uniformly distributed monitoring points via inversion, with a density approximately 12.9 times higher. The root mean squared error (RMSE) of the inversion was approximately 6.82 mm relative to leveling data, representing an accuracy improvement of about 3.0 mm compared to the SBAS results.

Key wordsStacking    DS-InSAR    surface deformation    residual phase    mining area deformation monitoring
收稿日期: 2024-03-21      出版日期: 2025-09-03
ZTFLH:  TP79  
基金资助:国家自然科学基金“高寒关键生态走廊滑坡机理与天空地协同智能监测预警方法”(U22A20569);“融合GNSS和InSAR数据的动态节点基水汽层析理论与同化方法研究”(42271460);“基于机器学习与多源数据融合的多基线相位解缠方法研究”(42001409);中国博士后科学基金资助项目“基于机器学习与数据压缩的矿区DSInSAR数据处理方法研究”(2022M723376);江苏省卓越博士后计划“‘学习型’理论与时间概率积分模型驱动下DSInSAR矿区监测研究”(2023ZB277)
作者简介: 李 志(1999-),男,硕士研究生,主要研究方向为时序InSAR技术形变灾害监测。Email: liz@cumt.edu.cn
引用本文:   
李志, 张书毕, 李鸣庚, 陈强, 卞和方, 李世金, 高延东, 张艳锁, 张帝. 面向复杂矿区的Stacking技术辅助DS-InSAR地表形变监测方法[J]. 自然资源遥感, 2025, 37(4): 12-20.
LI Zhi, ZHANG Shubi, LI Minggeng, CHEN Qiang, BIAN Hefang, LI Shijin, GAO Yandong, ZHANG Yansuo, ZHANG Di. Stacking-assisted DS-InSAR method for monitoring surface deformations in complex mining areas. Remote Sensing for Natural Resources, 2025, 37(4): 12-20.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024104      或      https://www.gtzyyg.com/CN/Y2025/V37/I4/12
Fig.1  研究区地理位置
序号 主影像日期 辅影像日期 时间基线/d 垂直基线/m
1 20151003 20151015 12 77.60
2 20151015 20151027 12 76.98
3 20151027 20151120 24 -122.34
4 20151120 20151202 12 7.22
5 20151120 20151214 24 32.01
6 20151120 20151226 36 92.14
7 20151202 20151214 12 24.79
8 20151202 20151226 24 84.92
9 20151202 20160107 36 108.82
10 20151214 20151226 12 60.13
11 20151214 20160107 24 84.02
12 20151226 20160107 12 23.90
13 20160107 20160307 60 -77.03
14 20160307 20160331 24 -62.22
Tab.1  干涉对时空基线
Fig.2  技术流程图
Fig.3  研究区时序监测结果
Fig.4  同名点形变速率相关性分析
Fig.5  融合技术、SBAS及水准结果比较
监测方法 最大误差/mm 平均误差/mm RMSE/mm
SBAS 28.07 7.25 9.79
融合方法 22.55 4.90 6.82
Tab.2  时序技术精度对比分析
Fig.6  重点形变监测区
Fig.7  东部形变区时序数据
Fig.8  北部形变区时序数据
[1] 王国法, 任世华, 庞义辉, 等. 煤炭工业“十三五” 发展成效与“双碳” 目标实施路径[J]. 煤炭科学技术, 2021, 49(9):1-8.
Wang G F, Ren S H, Pang Y H, et al. Development achievements of China’s coal industry during the 13th Five-Year Plan period and implementation path of “dual carbon” target[J]. Coal Science and Technology, 2021, 49(9):1-8.
[2] 谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(7):1949-1960.
Xie H P, Wu L X, Zheng D Z. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society, 2019, 44(7):1949-1960.
[3] Zhang G, Xu Z X, Chen Z W, et al. Predictable condition analysis and prediction method of SBAS-InSAR coal mining subsidence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-14.
[4] 朱建军, 杨泽发, 李志伟. InSAR矿区地表三维形变监测与预计研究进展[J]. 测绘学报, 2019, 48(2):135-144.
Zhu J J, Yang Z F, Li Z W. Recent progress in retrieving and predicting mining-induced 3D displace-ments using InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2):135-144.
[5] 于冰, 王冰, 刘国祥, 等. 融合DT和SDFPT的时序InSAR矿区形变监测与分析[J]. 自然资源遥感, 2024, 36(1):14-25.doi: 10.6046/zrzyyg.2022378.
Yu B, Wang B, Liu G X, et al. Deformation monitoring and analysis of mining areas based on the DT-SDFPT combined time-series InSAR[J]. Remote Sensing for Natural Resources, 2024, 36(1):14-25.doi: 10.6046/zrzyyg.2022378.
[6] 李涛, 唐新明, 李世金, 等. L波段差分干涉SAR卫星基础形变产品分类[J]. 测绘学报, 2023, 52(5):769-779.
Li T, Tang X M, Li S J, et al. Classification of basic deformation products of L-band differential interfero-metric SAR satellite[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5):769-779.
[7] Gabriel A K, Goldstein R M, Zebker H A. Mapping small elevation changes over large areas:Differential radar interferometry[J]. Journal of Geophysical Research:Solid Earth, 1989, 94(B7):9183-9191.
[8] Sandwell D T, Price E J. Phase gradient approach to stacking interferograms[J]. Journal of Geophysical Research:Solid Earth, 1998, 103(B12):30183-30204.
[9] Xu Y Z, Li T, Tang X M, et al. Research on the applicability of DInSAR,stacking-InSAR and SBAS-InSAR for mining region subsidence detection in the Datong coalfield[J]. Remote Sensing, 2022, 14(14):3314.
[10] 吴琼, 葛大庆, 于峻川, 等, 广域滑坡灾害隐患InSAR显著性形变区深度学习识别技术[J]. 测绘学报, 2022, 51(10):2046-2055.
Wu Q, Ge D Q, Yu J C, et al. Deep learning identification technology of InSAR significant deformation zone of potential landslide hazard at large scale[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10):2046-2055.
[11] Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1):8-20.
[12] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383.
[13] Ferretti A, Fumagalli A, Novali F, et al. A new algorithm for processing interferometric data-stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470.
[14] Zhao C J, Li Z, Tian B S, et al. A ground surface deformation monitoring InSAR method using improved distributed scatterers phase estimation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(11):4543-4553.
[15] 蒋弥, 丁晓利, 何秀凤, 等. 基于快速分布式目标探测的时序雷达干涉测量方法:以Lost Hills油藏区为例[J]. 地球物理学报, 2016, 59(10):3592-3603.
Jiang M, Ding X L, He X F, et al. FaSHPS-InSAR technique for distributed scatterers:A case study over the lost hills oil field,California[J]. Chinese Journal of Geophysics, 2016, 59(10):3592-3603.
[16] 蒋弥, 丁晓利, 李志伟. 时序InSAR同质样本选取算法研究[J]. 地球物理学报, 2018, 61(12):4767-4776.
Jiang M, Ding X L, Li Z W. Homogeneous pixel selection algorithm for multitemporal InSAR[J]. Chinese Journal of Geophysics, 2018, 61(12):4767-4776.
[17] Wang H N, Li K L, Zhang J, et al. Monitoring and analysis of ground surface settlement in mining clusters by SBAS-InSAR technology[J]. Sensors, 2022, 22(10):3711.
[18] Ma J Q, Yang J C, Zhu Z R, et al. Decision-making fusion of InSAR technology and offset tracking to study the deformation of large gradients in mining areas-Xuemiaotan mine as an example[J]. Frontiers in Earth Science, 2022, 10:962362.
[19] 高延东, 贾义琨, 李世金, 等. InSAR相位解缠最大流/最小割权值改进算法[J]. 测绘学报, 2024, 53(4):644-652.
Gao Y D, Jia Y K, Li S J, et al. The improved max-flow/Min-cut weight algorithm for InSAR phase unwrapping[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4):644-652.
[20] Feng X M, Chen Z Q, Li G, et al. Improving the capability of D-InSAR combined with offset-tracking for monitoring glacier velocity[J]. Remote Sensing of Environment, 2023, 285:113394.
[1] 靳婷婷, 喜文飞, 钱堂慧, 郭峻杞, 洪文玉, 丁子天, 桂富羽. 基于SBAS-InSAR技术的中老铁路沿线地表形变空间分布研究——以景洪段为例[J]. 自然资源遥感, 2025, 37(4): 232-240.
[2] 于冰, 王冰, 刘国祥, 张过, 胡云亮, 胡金龙. 融合DT和SDFPT的时序InSAR矿区形变监测与分析[J]. 自然资源遥感, 2024, 36(1): 14-25.
[3] 金鑫田, 王世杰, 张兰军, 高星月. 基于InSAR技术门源地震地表形变监测与分析[J]. 自然资源遥感, 2024, 36(1): 26-34.
[4] 刘辉, 徐心月, 陈蜜, 陈富龙, 丁瑞力, 刘菲. 秦皇岛段明长城时序InSAR遥感动态监测[J]. 自然资源遥感, 2023, 35(2): 202-211.
[5] 李柱, 范洪冬, 高彦涛, 许耀宗. 基于DS-InSAR的乌达煤田火区长时序地表形变监测与分析[J]. 自然资源遥感, 2022, 34(3): 138-145.
[6] 杨显华, 魏鹏, 吕军, 韩磊, 石浩林, 刘智. 基于多源遥感的采空塌陷识别技术应用研究[J]. 自然资源遥感, 2022, 34(2): 162-167.
[7] 张腾, 谢帅, 黄波, 范景辉, 陈建平, 童立强. 利用Sentinel-1和ALOS-2数据探测茂县中部活动滑坡[J]. 国土资源遥感, 2021, 33(2): 213-219.
[8] 张晓博, 赵学胜, 葛大庆, 刘斌, 张玲, 李曼, 王艳. 基于Sentinel TOPS模式Stacking技术监测淮南矿区沉降[J]. 国土资源遥感, 2018, 30(4): 200-205.
[9] 葛大庆, 王艳, 范景辉, 刘圣伟, 郭小方, 王毅. 地表形变D-InSAR监测方法及关键问题分析[J]. 国土资源遥感, 2007, 19(4): 14-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发