Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (4): 232-240    DOI: 10.6046/zrzyyg.2024186
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于SBAS-InSAR技术的中老铁路沿线地表形变空间分布研究——以景洪段为例
靳婷婷1(), 喜文飞1,2(), 钱堂慧1, 郭峻杞1, 洪文玉1, 丁子天1, 桂富羽1
1.云南师范大学地理学部,昆明 650500
2.云南省高原地理过程与环境变化重点实验室,昆明 650500
Exploring the spatial distribution of surface deformations along the China-Laos railway based on SBAS-InSAR technology: Taking the Jinghong section as an example
JIN Tingting1(), XI Wenfei1,2(), QIAN Tanghui1, GUO Junqi1, HONG Wenyu1, DING Zitian1, GUI Fuyu1
1. Department of Geography, Yunnan Normal University,Kunming 650500,China
2. The Key Laboratory of Plateau Geographic Process and Environmental Change in Yunnan Province,Kunming 650500,China
全文: PDF(9863 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 地表形变对铁路的正常运营产生严重影响,研究中老铁路沿线地表形变空间分布,对铁路防灾减灾具有重要意义。该文利用2021年12月—2023年8月的Sentinel-1A 36景升轨与50景降轨影像,采用小基线差分干涉测量(small baseline subset interferometric synthetic aperture Radar,SBAS-InSAR)技术进行形变反演,以中老铁路景洪段为例进行地表形变空间分布统计分析。结果表明: ①铁路沿线整体形变呈现不均匀分布,北部山区存在隐患多处,选取的典型形变区中,北部山区形变速率达-108.718 mm/a,南部平原区抬升明显,形变速率达227.315 mm/a; ②铁路沿线雷达视线向(line of sight,LOS)地表形变速率范围为-319.811~321.638 mm/a,中老铁路沿线在普文镇、大渡岗乡具有明显沉降现象,在勐养镇、允景洪街道、嘎洒镇等城镇区有轻微沉降,在勐罕镇东南地区抬升明显; ③中老铁路沿线经过山区的形变主要集中在800~1 400 m处,形变区域的岩性多为软岩。文章可为铁路的安全运营与维护提供技术参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
靳婷婷
喜文飞
钱堂慧
郭峻杞
洪文玉
丁子天
桂富羽
关键词 SBAS-InSAR地表形变中老铁路空间分布    
Abstract

Surface deformations pose significant threats to the normal operation of railways. Investigating the spatial distribution of surface deformations along the China-Laos railway holds great significance for disaster prevention and mitigation. Based on 36 scenes of ascending orbit and 50 scenes of descending orbit images from Sentinel-1A satellite from December 2021 to August 2023, this study conducted deformation inversion using the small baseline subset interferometric synthetic aperture Radar (SBAS-InSAR) technique. Besides, this study conducted spatial distribution statistics and analysis of surface deformations along the Jinghong section of the China-Laos railway. The results indicate that the overall deformation along the railway exhibits a heterogeneous distribution, with multiple potential hazards in the northern mountainous area. Among the selected typical deformation zones, the maximum subsidence rate in the northern mountainous area reaches -108.718 mm/a, whereas the southern plain area shows significant uplift with a rate of 227.315 mm/a. Along the railway, the surface deformation rates in the line of sight (LOS) direction ranged from -319.811 mm/a to 321.638 mm/a. Obvious subsidence occurred in Puwen Town and Dadugang Township. Conversely, minor subsidence was observed in urban areas like Mengyang town, Yunjinghong subdistrict, and Gasa town, with pronounced uplifts in the southeastern part of Menghan town. Along the railway, deformations in mountainous areas were primarily concentrated at elevations ranging from 800 m to 1400 m, with soft rocks prevailing in these deformed areas. InSAR-based analysis of the spatial distribution of the surface deformations along the railway is of significant value for the safe operation of the railway.

Key wordssmall baseline subset interferometric synthetic aperture Radar (SBAS-InSAR)    surface deformation    China-Laos railway    spatial distribution
收稿日期: 2024-05-27      出版日期: 2025-09-03
ZTFLH:  TP79  
基金资助:云南省重大科技专项“面向云南自然资源生态环境监测及技术治理的关键技术研究”(202202AD080010);云南师范大学研究生科研创新基金(YJSJJ25-B148)
作者简介: 靳婷婷(1999-),女,硕士,主要研究方向为雷达干涉测量。Email: 2323130106@ynnu.edu.cn
引用本文:   
靳婷婷, 喜文飞, 钱堂慧, 郭峻杞, 洪文玉, 丁子天, 桂富羽. 基于SBAS-InSAR技术的中老铁路沿线地表形变空间分布研究——以景洪段为例[J]. 自然资源遥感, 2025, 37(4): 232-240.
JIN Tingting, XI Wenfei, QIAN Tanghui, GUO Junqi, HONG Wenyu, DING Zitian, GUI Fuyu. Exploring the spatial distribution of surface deformations along the China-Laos railway based on SBAS-InSAR technology: Taking the Jinghong section as an example. Remote Sensing for Natural Resources, 2025, 37(4): 232-240.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024186      或      https://www.gtzyyg.com/CN/Y2025/V37/I4/232
Fig.1  研究区位置
Fig.2  部分干涉结果图
Fig.3  LOS向形变速率
Fig.4  升降轨形变速率验证图
Fig.5  形变区选取
Fig.6  形变区统计结果
因子 分级 形变区数量/个 占比/%
海拔 [400,600) m 2 5.4
[600,800) m 5 13.5
[800,1 000) m 12 32.4
[1 000,1 200) m 7 18.9
[1 200,1 400) m 10 27.0
≥1 400 m 1 2.7
距水系距离 <1 000 m 6 16.2
≥1 000 m 31 83.8
距断层距离 <1 000 m 5 13.5
≥1 000 m 32 86.5
工程地质
岩组
坚硬岩类 3 5.4
较硬岩类 2 8.1
软岩类 30 81.1
极软岩类 2 5.4
Tab.1  形变区统计
Fig.7  X7形变特征
Fig.8  B1形变特征
Fig.9  X25形变特征
Fig.10  X30形变特征
形变区 位置 地理环境 形变特点
X7 勐养镇 海拔1 250 m以上,岩体为硅质碎屑岩沉积岩 整体呈现沉降趋势
B1 勐罕镇 海拔800 m以下,属于软岩类岩体,土质疏松 整体以抬升为主
X25 嘎洒镇 左侧存在耕地与绿植区,右侧多为不透水面,下部主要为软岩 整体形变程度较小,呈现上下波动状态
X30 勐罕镇 属于构造剥蚀中山地貌,节理裂隙发育,岩石破碎,发育多组纵向节理 整体以沉降为主,2023年4—5月形变急剧
Tab.2  典型区形变特征
[1] 刘凯斯, 宫辉力, 陈蓓蓓. 基于InSAR数据的北京地铁6号线地面沉降监测分析[J]. 地球信息科学学报, 2018, 20(1):128-137.
Liu K S, Gong H L, Chen B B. Monitoring and analysis of land subsidence of Beijing Metro Line 6 based on InSAR data[J]. Journal of Geo-Information Science, 2018, 20(1):128-137.
[2] 罗三明, 杜凯夫, 万文妮, 等. 利用PSInSAR方法反演大时空尺度地表沉降速率[J]. 武汉大学学报(信息科学版), 2014, 39(9):1128-1134.
Luo S M, Du K F, Wan W N, et al. Ground subsidence rate inversion of large temporal and spatial scales based on extended PSInSAR method[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9):1128-1134.
[3] 赵国堂, 赵如锋, 刘俊飞. 高速铁路路基工后沉降变形源、变形传递与轨道不平顺控制方法[J]. 铁道学报, 2020, 42(12):127-134.
Zhao G T, Zhao R F, Liu J F. Deformation source,deformation transmission of post-construction settlement and control methods of track irregularity for high-speed railway subgrade[J]. Journal of the China Railway Society, 2020, 42(12):127-134.
[4] 刘春雷, 张媛静, 陆晨明, 等. 基于时序InSAR的九龙江河口地区地面沉降时空演变规律及成因分析[J]. 应用海洋学学报, 2024, 43(1):116-125.
Liu C L, Zhang Y J, Lu C M, et al. Spatial-temporal variation characteristics and causes analysis of ground deformation in Jiulong River Estuary area by time series InSAR[J]. Journal of Applied Oceanography, 2024, 43(1):116-125.
[5] 范军, 左小清, 李涛, 等. PS-InSAR和SBAS-InSAR技术对昆明主城区地面沉降监测的对比分析[J]. 测绘工程, 2018, 27(6):50-58.
Fan J, Zuo X Q, Li T, et al. Analysis and comparison of PS-InSAR and SBAS-InSAR for ground subsidence monitoring in the main city of Kunming[J]. Engineering of Surveying and Mapping, 2018, 27(6):50-58.
[6] 朱军桃, 兰荣添, 李海林, 等. 基于时序InSAR的厦门市地面沉降监测与分析[J]. 海洋测绘, 2023, 43(5):56-60,66.
Zhu J T, Lan R T, Li H L, et al. Monitoring and analysis of land subsidence in Xiamen City based on time-series InSAR[J]. Hydrographic Surveying and Charting, 2023, 43(5):56-60,66.
[7] 曹景峰, 刘洪铖. 基于Quickbird影像的水库库岸滑坡遥感解译研究[J]. 吉林水利, 2017(12):4-6,10.
Cao J F, Liu H C. Study on interpretation of the reservoir landslide based on QuickBird remote sensing images[J]. Jilin Water Resources, 2017(12):4-6,10.
[8] 朱怡飞, 姚鑫, 姚磊华, 等. 基于InSAR和光学遥感的贵州鬃岭采煤滑坡识别与危险性评价[J]. 地质力学学报, 2022, 28(2):268-280.
Zhu Y F, Yao X, Yao L H, et al. Identification and risk assessment of coal mining-induced landslides in Guizhou Province by InSAR and optical remote sensing[J]. Journal of Geomechanics, 2022, 28(2):268-280.
[9] 卫达宁, 王世杰. 基于时序InSAR技术的西安地铁沿线沉降监测及预测分析[J]. 地球物理学进展, 2024, 39(2):498-509.
Wei D N, Wang S J. Settlement monitoring and analysis along Xi’an metro line based on time series InSAR technology[J]. Progress in Geophysics, 2024, 39(2):498-509.
[10] 王艳, 廖明生, 李德仁, 等. 利用长时间序列相干目标获取地面沉降场[J]. 地球物理学报, 2007, 50(2):598-604.
Wang Y, Liao M S, Li D R, et al. Subsidence velocity retrieval from long-term coherent targets in Radar interferometric stacks[J]. Chinese Journal of Geophysics, 2007, 50(2):598-604.
[11] 葛鹏飞, 刘辉, 陈蜜, 等. 时序InSAR监测京雄城际铁路河北段地面沉降[J]. 测绘通报, 2022(7):64-70.
Ge P F, Liu H, Chen M, et al. Monitoring land subsidence of Hebei section of Beijing-Xiongan intercity railway by time-series InSAR[J]. Bulletin of Surveying and Mapping, 2022(7):64-70.
[12] 陈宝山, 张立峰, 何毅, 等. 兰新高速铁路军马场-民乐段地表形变监测及成因[J]. 兰州大学学报(自然科学版), 2022, 58(2):222-228,238.
Chen B S, Zhang L F, He Y, et al. Surface deformation monitoring and cause analysis of the section from the army horse ranch to Minle station of the Lanxin high-speed railway[J]. Journal of Lanzhou University (Natural Sciences), 2022, 58(2):222-228,238.
[13] Heleno S I N, Oliveira L G S, Henriques M J, et al. Persistent Scatterers Interferometry detects and measures ground subsidence in Lisbon[J]. Remote Sensing of Environment, 2011, 115(8):2152-2167.
[14] 张学东, 葛大庆, 肖斌, 等. 多轨道集成PS-InSAR监测高速公路沿线地面沉降研究——以京沪高速公路(北京—河北)为例[J]. 测绘通报, 2014(10):67-69,104.
Zhang X D, Ge D Q, Xiao B, et al. Study on multi-track integration PS-InSAR monitoring the land subsidence along the highway—Taking Jinghu highway(Beijing-Hebei) as an example[J]. Bulletin of Surveying and Mapping, 2014(10):67-69,104.
[15] He Y, Chen Y, Wang W, et al. TS-InSAR analysis for monitoring ground deformation in Lanzhou New District,the loess Plateau of China,from 2017 to 2019[J]. Advances in Space Research, 2021, 67(4):1267-1283.
[16] Wang W, He Y, Zhang L, et al. Analysis of surface deformation and driving forces in Lanzhou[J]. Open Geosciences, 2020, 12(1):1127-1145.
[17] 陈有东, 何毅, 张立峰, 等. 联合升降轨Sentinel-1A的地表形变监测技术研究[J]. 海洋测绘, 2020, 40(4):59-64.
Chen Y D, He Y, Zhang L F, et al. Research on ground deformation monitoring technique of jointing ascending and descending Sentinel-1A[J]. Hydrographic Surveying and Charting, 2020, 40(4):59-64.
[18] 王文辉, 何毅, 张立峰, 等. 基于PS-InSAR和GeoDetector的兰州主城区地表变形监测与驱动力分析[J]. 兰州大学学报(自然科学版), 2021, 57(3):382-388,394.
Wang W H, He Y, Zhang L F, et al. Ground deformation monitoring and driving force analysis of the main city area in Lanzhou based on PS-InSAR and GeoDetector[J]. Journal of Lanzhou University (Natural Sciences), 2021, 57(3):382-388,394.
[19] 张诗茄, 蒋建军, 缪亚敏, 等. 基于SBAS技术的岷江流域潜在滑坡识别[J]. 山地学报, 2018, 36(1):91-97.
Zhang S J, Jiang J J, Miao Y M, et al. Application of the SBAS technique in potential landslide identification in the Minjiang watershed[J]. Mountain Research, 2018, 36(1):91-97.
[20] 李凌婧, 姚鑫, 张永双, 等. 基于SBAS-InSAR技术的中巴公路(公格尔—墓士塔格段)地质体缓慢变形识别研究[J]. 工程地质学报, 2014, 22(5):921-927.
Li L J, Yao X, Zhang Y S, et al. SBAS-InSAR technology based identification of slow deformation of geologic mass along section of China-Pakistan highway[J]. Journal of Engineering Geology, 2014, 22(5):921-927.
[21] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383.
[22] 何清, 魏路, 肖永红. 基于SBAS-InSAR技术的安徽亳州市地面沉降时空分布特征与影响因素分析[J]. 中国地质灾害与防治学报, 2023, 34(5):81-90.
He Q, Wei L, Xiao Y H. Analysis of spatial-temporal distribution characteristics and influencing factors of land subsidence in Bozhou City,Anhui Province based on SBAS-InSAR technology[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(5):81-90.
[23] Su X J, Zhang Y, Meng X M, et al. Landslide mapping and analysis along the China-Pakistan Karakoram Highway based on SBAS-InSAR detection in 2017[J]. Journal of Mountain Science, 2021, 18(10):2540-2564.
[1] 李志, 张书毕, 李鸣庚, 陈强, 卞和方, 李世金, 高延东, 张艳锁, 张帝. 面向复杂矿区的Stacking技术辅助DS-InSAR地表形变监测方法[J]. 自然资源遥感, 2025, 37(4): 12-20.
[2] 杨成生, 魏春蕊, 魏云杰, 李祖锋, 丁慧兰. 基于多源遥感影像的西藏白格滑坡失稳前后全过程形变监测研究[J]. 自然资源遥感, 2025, 37(3): 203-211.
[3] 魏小强, 杨国林, 刘涛, 邵明, 马志刚. 基于GRACE与InSAR数据地下水变化与地面沉降滞后性研究[J]. 自然资源遥感, 2025, 37(1): 122-130.
[4] 武德宏, 郝利娜, 严丽华, 唐烽顺, 郑光. 金沙江滑坡群InSAR探测与形变因素分析[J]. 自然资源遥感, 2024, 36(3): 259-266.
[5] 张利军, 贺思睿, 张建东, 彭光雄, 徐质彬, 谢渐成, 唐凯, 卜建财. 多源遥感技术支持下的滑坡地灾隐患识别——以常澧地区为例[J]. 自然资源遥感, 2024, 36(2): 173-187.
[6] 蔡建澳, 明冬萍, 赵文祎, 凌晓, 张雨, 张星星. 基于综合遥感的察隅县滑坡隐患识别及致灾机理分析[J]. 自然资源遥感, 2024, 36(1): 128-136.
[7] 于冰, 王冰, 刘国祥, 张过, 胡云亮, 胡金龙. 融合DT和SDFPT的时序InSAR矿区形变监测与分析[J]. 自然资源遥感, 2024, 36(1): 14-25.
[8] 金鑫田, 王世杰, 张兰军, 高星月. 基于InSAR技术门源地震地表形变监测与分析[J]. 自然资源遥感, 2024, 36(1): 26-34.
[9] 赵华伟, 周林, 谭明伦, 汤明高, 童庆刚, 秦佳俊, 彭宇辉. 基于光学遥感和SBAS-InSAR的川渝输电网滑坡隐患早期识别[J]. 自然资源遥感, 2023, 35(4): 264-272.
[10] 刘辉, 徐心月, 陈蜜, 陈富龙, 丁瑞力, 刘菲. 秦皇岛段明长城时序InSAR遥感动态监测[J]. 自然资源遥感, 2023, 35(2): 202-211.
[11] 潘建平, 付占宝, 邓福江, 蔡卓言, 赵瑞淇, 崔伟. 时序InSAR解析消落带区域岸坡地表形变及其水要素影响[J]. 自然资源遥感, 2023, 35(2): 212-219.
[12] 胡锋, 李雪, 左晋, 宋善海, 唐红祥, 谷晓平. 贵州500亩以上坝区遥感识别与空间分布特征研究[J]. 自然资源遥感, 2023, 35(2): 287-294.
[13] 虎小强, 杨树文, 闫恒, 薛庆, 张乃心. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023, 35(1): 171-179.
[14] 罗雪玮, 向喜琼, 吕亚东. 龙里某塌陷时序InSAR变形监测的PS修正[J]. 自然资源遥感, 2022, 34(3): 82-87.
[15] 徐子兴, 季民, 张过, 陈振炜. 基于SBAS-InSAR技术和Logistic模型的矿区沉降动态预测方法[J]. 自然资源遥感, 2022, 34(2): 20-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发