Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (3): 248-258    DOI: 10.6046/zrzyyg.2023093
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于多源卫星遥感影像的广西中南部地区甘蔗识别及产量预测
罗维1(), 李修华1,2(), 覃火娟1, 张木清2, 王泽平3, 蒋柱辉4
1.广西大学电气工程学院,南宁 530004
2.广西大学甘蔗生物学重点实验室,南宁 530004
3.广西农业科学院甘蔗研究所,南宁 530007
4.广西糖业集团有限公司,南宁 530022
Identification and yield prediction of sugarcane in the south-central part of Guangxi Zhuang Autonomous Region, China based on multi-source satellite-based remote sensing images
LUO Wei1(), LI Xiuhua1,2(), QIN Huojuan1, ZHANG Muqing2, WANG Zeping3, JIANG Zhuhui4
1. School of Electrical Engineering, Guangxi University, Nanning 530004, China
2. Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
3. Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
4. Guangxi Sugar Industry Group, Nanning 530022, China
全文: PDF(5523 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

针对广西地区作物种类多、蔗区调查复杂度高,以及因天气多变导致的卫星遥感图像获取困难等问题,该文提出了一种基于Sentienl-2影像的语义分割改进算法用于自动识别甘蔗种植区域,并在多时相的Sentinel-2和Landsat8影像数据基础上,提出了一种代表性光谱特征提取方法构建甘蔗产量预测模型。首先在轻量级网络BiseNetV2中加入了高效通道注意力模块(efficient channel attention, ECA),构建了ECA-BiseNetV2模型识别蔗田的种植区域; 然后从识别到的甘蔗种植区域中提取不同时期的多种植被指数,利用线性回归模型将Landsat8植被指数转化为Sentinel-2植被指数,以减小Sentinel-2和Landsat8的数据差异; 接着对各蔗区、各生长周期内的植被指数时间序列数据进行三次曲线拟合,提取最大值作为代表性光谱特征; 最后使用了多种机器学习算法构建产量预测模型。结果表明,所提出模型总体精度达91.54%,甘蔗查准率达95.57%; 基于植被指数拟合最大值构建的决策树模型的测试集R2为0.792,比采用实际最大值构建的相应模型(R2=0.759)提升了4.3%。该方法可有效解决因天气问题导致的甘蔗关键生长期遥感图像缺失而难以准确构建产量预测模型的问题,展示出较强的应用性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗维
李修华
覃火娟
张木清
王泽平
蒋柱辉
关键词 语义分割植被指数甘蔗产量预测卫星遥感时间序列    
Abstract

This study aims to solve the challenges faced in the prediction of sugarcane yield in Guangxi, such as varied crops, complex investigations in the sugarcane planting areas, and difficult acquisition of remote-sensing images caused by the changeable weather. To this end, an improved semantic segmentation algorithm based on Sentinel-2 images was proposed to automatically identify sugarcane planting areas, and an extraction method for representative spectral features was developed to build a sugarcane yield prediction model based on multi-temporal Sentinel-2 and Landsat8 images. First, an ECA-BiseNetV2 identification model for sugarcane planting areas was constructed by introducing an efficient channel attention (ECA) module into the BiseNetV2 lightweight unstructured network. As a result, the overall pixel classification accuracy reached up to 91.54%, and the precision for sugarcane pixel identification was up to 95.57%. Then, multiple vegetation indices of different growth periods of the identified sugarcane planting areas were extracted, and the Landsat8 image-derived vegetation indices were converted into Sentinel-2 image-based ones using a linear regression model to reduce the differences of the indices derived using images from the two satellites. Subsequently, after the fitting of time-series data of the extracted vegetation indices using a cubic curve, the maximum indices were obtained as the representative spectral features. Finally, a yield prediction model was built using multiple machine learning algorithms. The results indicate that the test set of the decision tree model built using the fitted maximum values of the vegetation indices yielded R? of up to 0.759, 4.3%, higher than that (0.792) of the model built using the available actual maximum values. Therefore, this method can effectively resolve the difficulty in developing an accurate sugarcane yield prediction model caused by changeable weather-induced lack of remote sensing images of sugarcane of the key growth periods.

Key wordssemantic segmentation    vegetation index    sugarcane yield prediction    satellite remote sensing    time-series
收稿日期: 2023-04-17      出版日期: 2024-09-03
ZTFLH:  S127  
  TP751  
  TP79  
基金资助:广西重大科技专项项目“广西数字蔗田技术平台的构建与应用示范”(桂科AA22117004);广西重大科技创新基地建设项目“广西甘蔗生物学重点实验室”(桂科2018-266-Z01);国家自然科学基金项目“低空航拍图像融合田间环境及气象信息立体构建甘蔗长势、品质及产量预测模型”(31760342)
通讯作者: 李修华(1983-),女,博士,副教授,主要从事作物光谱检测、高通量作物表型分析和农业遥感研究。Email: lixh@gxu.edu.cn
作者简介: 罗 维(1994-),男,硕士研究生,主要研究方向为多光谱遥感卫星在农业的应用研究。Email: 2012391030@st.gxu.edu.cn
引用本文:   
罗维, 李修华, 覃火娟, 张木清, 王泽平, 蒋柱辉. 基于多源卫星遥感影像的广西中南部地区甘蔗识别及产量预测[J]. 自然资源遥感, 2024, 36(3): 248-258.
LUO Wei, LI Xiuhua, QIN Huojuan, ZHANG Muqing, WANG Zeping, JIANG Zhuhui. Identification and yield prediction of sugarcane in the south-central part of Guangxi Zhuang Autonomous Region, China based on multi-source satellite-based remote sensing images. Remote Sensing for Natural Resources, 2024, 36(3): 248-258.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023093      或      https://www.gtzyyg.com/CN/Y2024/V36/I3/248
Fig.1  蔗区分布
样本数量 最大值/
(t·hm-2)
最小值/
(t·hm-2)
均值/
(t·hm-2)
方差/
(t·hm-2)2
64 161.60 49.06 85.94 602.71
Tab.1  甘蔗产量数据统计情况
敏感
波段
Landsat8 Sentinel-2
波长/nm 分辨率/m 波长/nm 分辨率/m
蓝光 450~510 30 492 10
绿光 530~590 30 560 10
红光 640~670 30 665 10
近红外 850~880 30 833 10
Tab.2  卫星遥感影像选取的波段参数
Fig.2  不同时期某蔗区的卫星遥感影像
影像编号 地理位置 成像时间 云量/% 像素分辨率/m
T48QZL 蔗区1号 2018-10-03 <5 10
T48QYL 蔗区1号 2019-09-28 <5 10
T49QBF 蔗区2号 2019-09-28 <5 10
T48QYK 蔗区3号 2020-10-22 <5 10
Tab.3  卫星遥感影像基本信息
Fig.3  良圻农场甘蔗地块中心坐标点分布情况
Fig.4  注意力模块结构
Fig.5  ECA-BiseNetV2网络结构
Fig.6  分类结果转换掩模示意图
植被指数 计算公式
RVI N I R R E D
EVI 2.5 × ( N I R - R E D ) N I R + 6 R E D - 7.5 B L U E + 1
ARVI N I R - ( 2 R E D - B L U E ) N I R + ( 2 R E D - B L U E )
NDVI N I R - R E D N I R + R E D
MSAVI 2 ( N I R + 1 ) - 2 ( N I R + 1 ) 2 - 8 ( N I R - R E D ) 2
OSAVI N I R - R E D N I R + R E D + 0.16
Tab.4  植被指数及计算公式
组别 卫星 成像时间(格林尼治标准时间) 太阳方位角/(°)
第1组 Sentinel-2 2019-09-23 03:31:36.497 072 142.284 368 98
Landsat8 2019-09-23 03:17:09.454 461 134.876 687 23
第2组 Sentinel-2 2019-09-25 03:21:28.373 447 142.049 097 88
Landsat8 2019-09-25 03:04:48.402 126 136.096 298 00
第3组 Sentinel-2 2019-11-10 03:41:53.132 702 160.935 621 44
Landsat8 2019-11-10 03:17:36.267 949 152.188 601 14
第4组 Sentinel-2 2020-04-27 03:21:37.616 403 112.802 340 64
Landsat8 2020-04-27 03:10:09.707 394 108.816 244 32
Tab.5  4组影像成像信息
Fig.7  训练过程损失函数值及测试集中总体精度变化曲线
模型 Kappa 总体精
度/%
查准
率/%
查全
率/%
单张推理
时间/ms
BiseNetV2 0.798 6 90.43 94.62 89.87 48
ECA-BiseNetV2 0.806 9 91.54 95.57 90.78 50
U-Net 0.681 5 83.67 94.61 77.13 101
SegNet 0.642 7 81.95 95.69 73.84 95
DeepLabV3+ 0.801 7 91.09 94.90 90.36 105
Fast-SCNN 0.675 2 84.19 92.32 81.52 39
BiseNetV1 0.744 8 87.68 94.27 85.51 55
Tab.6  各网络最佳模型的评价指标
Fig.8  BiseNetV2与ECA-BiseNetV2的输出样例对比
Fig.9  ECA-BiseNetV2模型识别效果示意图
波段 R2 MRE/%
蓝光 0.885 12.26
绿光 0.950 4.96
红光 0.977 5.37
近红外 0.925 2.80
Tab.7  Landsat8与Sentinel-2波段值差异分析
植被指数 线性转化模型 R2 MRE/%
转化前 转化后
RVI y = 0.976 9x-0.200 9 0.994 6.71 2.82
NDVI y = 1.044 7x-0.046 9 0.996 2.87 1.03
EVI y = 0.961 7x+0.032 4 0.945 4.66 3.84
MSAVI y = 0.968 9x+0.026 6 0.985 1.09 0.99
ARVI y = 1.029 3x-0.014 6 0.999 2.53 2.43
OSAVI y = 1.014 8x-0.013 4 0.993 1.90 1.16
Tab.8  各植被指数的线性转化模型及在测试集中的转化结果
Fig.10  2014年蔗区1—4号的NDVI拟合效果
植被指数 R2分布范围 MRE分布范围/%
RVI 0.706~0.934 0.69~3.57
NDVI 0.612~0.849 0.43~3.29
EVI 0.657~0.897 1.67~2.98
MSAVI 0.732~0.953 0.35~1.66
ARVI 0.682~0.861 0.89~2.72
OSAVI 0.714~0.908 0.25~1.96
Tab.9  曲线方程拟合值与时序数据的误差分析
植被指数 Pearson相关系数
RVI 0.725
NDVI 0.718
EVI 0.424
MSAVI 0.657
ARVI 0.504
OSAVI 0.756
Tab.10  各植被指数实际最大值与产量的相关性分析
模型 训练集 测试集
MRE/% R2 MRE/% R2
逻辑回归 8.23 0.622 10.34 0.621
支持向量机 8.87 0.586 5.75 0.561
决策树 3.74 0.777 9.03 0.759
随机森林 3.79 0.769 10.80 0.758
Tab.11  使用实际最大值的各模型训练效果
植被指数 Pearson相关系数
RVI 0.773
NDVI 0.831
EVI 0.444
MSAVI 0.632
ARVI 0.535
OSAVI 0.757
Tab.12  植被指数拟合最大值与产量的相关性分析
模型 训练集 测试集
MRE/% R2 MRE/% R2
逻辑回归 9.10 0.716 6.14 0.697
支持向量机 9.30 0.561 8.84 0.559
决策树 3.65 0.820 8.59 0.792
随机森林 3.56 0.798 7.34 0.774
Tab.13  使用拟合最大值的各模型训练结果
[1] 邓宇驰, 刘晓婷, 黄莹, 等. 广西崇左蔗区2022年糖料蔗生产调查[J]. 中国种业, 2022(10):48-51.
Deng Y C, Liu X T, Huang Y, et al. Investigation on sugar cane production in Chongzuo sugarcane area of Guangxi in 2022[J]. China Seed Industry, 2022(10):48-51.
[2] Taufik A, Syed Ahmad S S, Azmi E F. Classification of Landsat8 satellite data using unsupervised methods[C]// Piuri V,Balas V,Borah S,et al.Intelligent and Interactive Computing.Singapore:Springer, 2019:275-284.
[3] 陈洋波, 窦鹏, 张涛. 基于Landsat的多分类器集成遥感影像分类[J]. 测绘科学, 2018, 43(8):97-103,109.
Chen Y B, Dou P, Zhang T. Multiple classifiers integrated classification based on Landsat imagery[J]. Science of Surveying and Mapping, 2018, 43(8):97-103,109.
[4] 栗旭升, 李虎, 陈冬花, 等. 联合GF-5与GF-6卫星数据的多分类器组合亚热带树种识别[J]. 林业科学, 2020, 56(10):93-104.
Li X S, Li H, Chen D H, et al. Multiple classifiers combination method for tree species identification based on GF-5 and GF-6[J]. Scientia Silvae Sinicae, 2020, 56(10):93-104.
[5] 吴玉鑫, 王卷乐, 韩保民, 等. 基于时空谱特征的墨脱县森林分类方法与实现[J]. 自然资源遥感, 2023, 35(1):180-188.doi:10.6046/zrzyyg.2022016.
Wu Y X, Wang J L, Han B M, et al. Forest classification for Motuo County:A method based on spatio-temporal-spectral characteristics[J]. Remote Sensing for Natural Resources, 2023, 35(1):180-188.doi:10.6046/zrzyyg.2022016.
[6] 李玉峰, 林辉. 基于CNN的多光谱遥感图像地物覆盖分类[J]. 微处理机, 2019, 40(1):43-48.
Li Y F, Lin H. Multi-spectral remote sensing image classification of ground coverage based on CNN[J]. Microprocessors, 2019, 40(1):43-48.
[7] Nascimento B H, Garcia F L M, Schwieder M, et al. Detailed agricultural land classification in the Brazilian cerrado based on phenological information from dense satellite image time series[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 82:101872.
[8] Liu Q, Basu S, Ganguly S, et al. DeepSat V2:Feature augmented convolutional neural nets for satellite image classification[J]. Remote Sensing Letters, 2020, 11(2):156-165.
[9] 姜楠, 张雪红, 汶建龙, 等. 基于高分六号宽幅影像的油菜种植分布区域提取方法[J]. 地球信息科学学报, 2021, 23(12):2275-2291.
doi: 10.12082/dqxxkx.2021.210233
Jiang N, Zhang X H, Wen J L, et al. Extraction method of rapeseed planting distribution area based on GF-6 WFV image[J]. Journal of Geo-Information Science, 2021, 23(12):2275-2291.
[10] 伊尔潘·艾尼瓦尔, 买买提·沙吾提, 买合木提·巴拉提. 基于GF-2影像和Unet模型的棉花分布识别[J]. 自然资源遥感, 2022, 34(2):242-250.doi:10.6046/zrzyyg.2021135.
Erpaw A, Mamat S, Maihemuti B. Recognition of cotton distribution based on GF-2 images and Unet model[J]. Remote Sensing for Natural Resources, 2022, 34(2):242-250.doi:10.6046/zrzyyg.2021135.
[11] Poortinga A, Thwal N S, Khanal N, et al. Mapping sugarcane in Thailand using transfer learning,a lightweight convolutional neural network,NICFI high resolution satellite imagery and Google Earth Engine[J]. ISPRS Open Journal of Photogrammetry and Remote Sensing, 2021, 1:100003.
[12] Shang S, Zhang J, Wang X, et al. Faster and lighter meteorological satellite image classification by a lightweight channel-dilation-concatenation net[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16:2301-2317.
[13] 黄冬梅, 陈燕丽, 莫建飞, 等. 广西典型地貌植被覆盖度随地形的变化特征[J]. 广西林业科学, 2022, 51(5):626-633.
doi: 10.19692/j.issn.1006-1126.20220505
Huang D M, Chen Y L, Mo J F, et al. Vegetation coverage change characteristics of typical landforms in Guangxi with topography[J]. Guangxi Forestry Science, 2022, 51(5):626-633.
doi: 10.19692/j.issn.1006-1126.20220505
[14] 黄基杰. 甘蔗地快速识别的样本库建设——以广西崇左为例[J]. 南方国土资源, 2019(4):45-47.
Huang J J. Construction of sample database for rapid identification of sugarcane fields:A case study of Chongzuo,Guangxi[J]. Nanfang Guotu Ziyuan, 2019(4):45-47.
[15] Wang M, Liu Z, Ali Baig M H, et al. Mapping sugarcane in complex landscapes by integrating multi-temporal Sentinel-2 images and machine learning algorithms[J]. Land Use Policy, 2019, 88:104190.
[16] Lofton J, Tubana B S, Kanke Y, et al. Estimating sugarcane yield potential using an in-season determination of normalized difference vegetative index[J]. Sensors, 2012, 12(6):7529-7547.
doi: 10.3390/s120607529 pmid: 22969359
[17] Fernandes J L, Rocha J V, Lamparelli R A C. Sugarcane yield estimates using time series analysis of spot vegetation images[J]. Scientia Agricola, 2011, 68(2):139-146.
[18] Rahman M M, Robson A. Integrating Landsat-8 and sentinel-2 time series data for yield prediction of sugarcane crops at the block level[J]. Remote Sensing, 2020, 12(8):1313.
[19] 张淮栋, 陈争光, 张成龙. 基于高分二号-NDVI的大豆遥感估产的时相选择[J]. 湖北农业科学, 2018, 57(6):103-108.
Zhang H D, Chen Z G, Zhang C L. Time selection of estimation yield with remote sensing of soybean based on GF-2-NDVI[J]. Hubei Agricultural Sciences, 2018, 57(6):103-108.
[20] 朱再春, 陈联裙, 张锦水, 等. 基于信息扩散和关键期遥感数据的冬小麦估产模型[J]. 农业工程学报, 2011, 27(2):187-193,398.
Zhu Z C, Chen L Q, Zhang J S, et al. Winter wheat yield estimation model based on information diffusion and remote sensing data at major growth stages[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(2):187-193,398.
[21] 王恺宁, 王修信. 多植被指数组合的冬小麦遥感估产方法研究[J]. 干旱区资源与环境, 2017, 31(7):44-49.
Wang K N, Wang X X. Research on winter wheat yield estimation with the multiply remote sensing vegetation index combination[J]. Journal of Arid Land Resources and Environment, 2017, 31(7):44-49.
[22] 娄正方, 李国清, 张向军, 等. 一种顾及多参数的冬小麦遥感估产方法与应用[J]. 测绘通报, 2021(s1):154-158.
Lou Z F, Li G Q, Zhang X J, et al. A method of winter wheat yield estimation by considering multiple parameters andits application[J]. Bulletin of Surveying and Mapping, 2021(s1):154-158.
[23] 贾艳红, 苏筱茜, 李鹤冉. 1991—2020年南宁市气候变化特征分析[J]. 广西师范大学学报(自然科学版), 2023, 41(2):190-200.
Jia Y H, Su X Q, Li H R. Characteristic analysis of climate change in Nanning from 1991 to 2020[J]. Journal of Guangxi Normal University (Natural Science Edition), 2023, 41(2):190-200.
[24] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[C]// IEEE Transactions on Pattern Analysis and Machine Intelligence.IEEE, 2017:640-651.
[25] Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015:234-241.
[26] Yu C, Gao C, Wang J, et al. BiSeNet V2:Bilateral network with guided aggregation for real-time semantic segmentation[J]. International Journal of Computer Vision, 2021, 129(11):3051-3068.
[27] Wang Q, Wu B, Zhu P, et al. ECA-net:Efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Seattle,WA,USA.IEEE, 2020:11531-11539.
[28] Badrinarayanan V, Kendall A, Cipolla R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615 pmid: 28060704
[29] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// European Conference on Computer Vision.Cham:Springer, 2018:833-851.
[30] Poudel R P K, Liwicki S, Cipolla R. Fast-SCNN:Fast semantic segmentation network[EB/OL]. 2019:arXiv:1902.04502. https://arxiv.org/abs/1902.04502.pdf
[31] Yu C, Wang J, Peng C, et al. BiSeNet:Bilateral segmentation network for real-time semantic segmentation[C]// European Conference on Computer Vision.Cham:Springer, 2018:334-349.
[32] Hosmer D W Jr, Lemeshow S, Sturdivant R X. Applied logistic regression[M]. Nev Hoboken: John Wiley and Sons Inc, 2013.
[33] Pisner D A, Schnyer D M. Support vector machine[M]//Machine Learning. Amsterdam: Elsevier, 2020:101-121.
[34] Priyanka N A, Kumar D. Decision tree classifier:A detailed survey[J]. International Journal of Information and Decision Sciences, 2020, 12(3):246.
[35] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
[1] 张春桂, 彭继达. 基于气象和遥感的空气清新度监测技术研究[J]. 自然资源遥感, 2024, 36(3): 163-173.
[2] 白石, 唐攀攀, 苗朝, 金彩凤, 赵博, 万昊明. 基于高分辨率遥感影像和改进U-Net模型的滑坡提取——以汶川地区为例[J]. 自然资源遥感, 2024, 36(3): 96-107.
[3] 周小迦. 丘陵地带耕地撂荒遥感监测应用研究[J]. 自然资源遥感, 2024, 36(1): 235-241.
[4] 易邦进, 黄成, 傅涛, 孙技星, 朱宝权, 钟成. 基于SBAS-InSAR 技术的中缅边境山区地质灾害隐患探测[J]. 自然资源遥感, 2023, 35(4): 186-191.
[5] 张治梅, 樊彦国, 矫志军, 管青春. 土壤盐渍化对滨海湿地生态环境质量的影响——以黄河三角洲为例[J]. 自然资源遥感, 2023, 35(4): 226-235.
[6] 林佳惠, 刘广, 范景辉, 赵红丽, 白世彪, 潘宏宇. 联合改进U-Net模型和D-InSAR技术采矿沉陷提取方法[J]. 自然资源遥感, 2023, 35(3): 145-152.
[7] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[8] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
[9] 李恺霖, 廖廓, 党皓飞. 内陆与近岸水体的色度学遥感研究进展[J]. 自然资源遥感, 2023, 35(1): 15-26.
[10] 秦乐, 何鹏, 马玉忠, 刘建强, 杨彬. 基于时空谱特征的遥感影像时间序列变化检测[J]. 自然资源遥感, 2022, 34(4): 105-112.
[11] 孟琮棠, 赵银娣, 韩文泉, 何晨阳, 陈锡秋. 基于RandLA-Net的机载激光雷达点云城市建筑物变化检测[J]. 自然资源遥感, 2022, 34(4): 113-121.
[12] 沈骏翱, 马梦婷, 宋致远, 柳汀洲, 张微. 基于深度学习语义分割模型的高分辨率遥感图像水体提取[J]. 自然资源遥感, 2022, 34(4): 129-135.
[13] 张思源, 岳楚, 袁国礼, 袁帅, 庞文强, 李俊. 基于ENDVI-SI3特征空间的盐渍化反演模型及风险评估[J]. 自然资源遥感, 2022, 34(4): 136-143.
[14] 陈艳英, 马鑫程, 徐彦平, 王颖, 汪艳波. 地形及NDVI在林火遥感监测二次识别中应用的方法探讨[J]. 自然资源遥感, 2022, 34(3): 88-96.
[15] 曾晖, 任华忠, 朱金顺, 郭金鑫, 叶昕, 滕沅建, 聂婧, 秦其明. 叙利亚战争对植被的影响[J]. 自然资源遥感, 2022, 34(3): 121-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发