Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (4): 226-235    DOI: 10.6046/zrzyyg.2022284
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
土壤盐渍化对滨海湿地生态环境质量的影响——以黄河三角洲为例
张治梅1(), 樊彦国1(), 矫志军2, 管青春1
1.中国石油大学(华东)海洋与空间信息学院,青岛 266580
2.中南大学地球科学与信息物理学院,长沙 410012
Impact of soil salinization on the eco-environment quality of coastal wetlands:A case study of Yellow River Delta
ZHANG Zhimei1(), FAN Yanguo1(), JIAO Zhijun2, GUAN Qingchun1
1. College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao 266580, China
2. School of Geosciences and Info-physics, Central South University, Changsha 410012, China
全文: PDF(5239 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

土壤盐渍化是土地退化和沙漠化的重要原因之一,会对生态环境造成巨大的影响。滨海湿地属于典型的生态环境脆弱地区且盐渍化特征突出,迫切需要研究土壤盐渍化对湿地生态环境的影响。该文提出基于基线的盐渍化指数(baseline-based soil salinity index,BSSI),有效抑制了复杂地物对地表盐渍化监测带来的影响,盐渍化土壤提取精度高于其他盐分指数模型10%; 随后通过改进顾及水效益的生态环境质量指数(water benefit-based ecological index,WBEI)提出优化的顾及水效益的生态环境质量指数(optimized water benefit-based ecological index,OWBEI),使生态环境质量评估精度有效提高至87%; 最后,以黄河三角洲为例获取其土壤盐渍化分布和生态环境质量分布,探讨土壤盐渍化对生态环境质量的影响机制。结果表明,随着盐渍化程度的不断加深,滨海湿地的土壤脆弱性不断增加,间接导致生态环境质量持续变差。尽管生态环境保护措施不断提出,但针对盐渍化土壤的保护措施较少,导致生态质量状况恶化并负反馈于土壤,最终形成恶性循环,不利于当地生产生活和社会发展。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张治梅
樊彦国
矫志军
管青春
关键词 滨海湿地土壤盐渍化生态环境质量虚拟盐渍化基线植被指数    
Abstract

Soil salinization is an important reason for land degradation and desertification and has a huge impact on the eco-environment. Coastal wetlands are typical areas subjected to a weak eco-environment and severe salinization, and there is an urgent need to investigate the impact of soil salinization on their eco-environment. This study proposed the baseline-based soil salinity index (BSSI), which can effectively suppress the influence of complex features on surface salinization monitoring and improve the accuracy of saline soil extraction by 10% compared to other salinity index models. Furthermore, this study proposed the optimized water benefit-based ecological index (OWBEI) by optimizing the water benefit-based ecological index (WBEI), which can effectively increase the accuracy of eco-environment quality assessment to 87%. Finally, this study explored the mechanical processes of the influence of soil salinization on the eco-environment quality based on the distribution of soil salinization and eco-environment quality obtained from the Yellow River Delta. The results show that the deterioration of soil salinization has led to an increase in the soil vulnerability of coastal wetlands, indirectly resulting in a continuous decrease in eco-environment quality. Although eco-environment protection measures have been continuously proposed, few of them are tailored to the solving of salinization. This leads to the deterioration of the ecological quality, which then yields negative feedback to the soil and eventually forms a vicious circle. This adversely affects local production, life, and social development.

Key wordscoastal wetlands    soil salinization    eco-environment quality    virtual salinization baseline    vegetation index
收稿日期: 2022-07-05      出版日期: 2023-12-21
ZTFLH:  P237  
基金资助:国家自然科学青年基金项目“基于生态系统服务的海岸带韧性评估及驱动机制研究——以黄河三角洲为例”(42106215);自主创新项目-战略专项项目“退化生态系统土壤典型指标在线监测技术”(22CX01004A-3)
通讯作者: 樊彦国(1965-),男,博士,教授,主要研究方向为3S技术在数字国土、城市及海岸带方向的教学与研究工作。Email: ygfan@upc.edu.cn
作者简介: 张治梅(1998-),女,硕士研究生,主要研究方向为湿地环境演变与遥感应用。E-mail: zmzhang98@163.com
引用本文:   
张治梅, 樊彦国, 矫志军, 管青春. 土壤盐渍化对滨海湿地生态环境质量的影响——以黄河三角洲为例[J]. 自然资源遥感, 2023, 35(4): 226-235.
ZHANG Zhimei, FAN Yanguo, JIAO Zhijun, GUAN Qingchun. Impact of soil salinization on the eco-environment quality of coastal wetlands:A case study of Yellow River Delta. Remote Sensing for Natural Resources, 2023, 35(4): 226-235.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022284      或      https://www.gtzyyg.com/CN/Y2023/V35/I4/226
Fig.1  研究区位置
影像获取时间 传感器 分辨率/m
2006-05-03 TM 30
2012-05-03 TM 30
2017-04-23 OLI 30
2020-05-01 OLI 30
Tab.1  Landsat影像数据
Fig.2  土壤盐渍化对滨海湿地生态影响机制分析体系
等级 SSC%
非盐渍土 [0.0, 0.3]
轻度盐渍土 (0.3, 0.5]
中度盐渍土 (0.5, 1.0]
重度盐渍土 (1.0, 2.0]
盐土 (2.0, +∞)
Tab.2  盐渍土分类等级
Fig.3  指数构造示意图
方法 公式
SI[1] S I = ( B × R )
SI1[2] S I 1 = ( G × R )
SI2[2] S I 2 = ( G 2 + R 2 + N I R 2 )
VSSI[3] V S S I = 2 G - 5 R + N I R
Tab.3  对比方法
方法 OA/% Eo/% Ec/% Kappa
SI 67.88 58.06 12.90 0.376 2
SI1 67.15 51.61 20.97 0.354 2
SI2 70.07 64.52 1.61 0.427 2
VSSI 81.02 41.94 0.00 0.630 4
BSSI 91.24 17.74 1.61 0.825 7
Tab.4  盐渍土分类精度
Fig.4  地表假彩色图像
Fig.5  土壤盐渍化等级图
等级 年份
2006 2012 2017 2020
非盐
渍化
面积/km2 2 921.67 2 965.70 3 060.77 2 976.00
占比/% 58.15 59.10 60.94 59.20
轻度
盐渍化
面积/km2 298.39 203.46 111.27 97.99
占比/% 5.94 4.05 2.22 1.95
中度
盐渍化
面积/km2 709.58 442.31 288.55 210.44
占比/% 14.12 8.81 5.74 4.19
重度
盐渍化
面积/km2 753.27 789.58 707.17 428.03
占比/% 14.99 15.73 14.08 8.51
盐土 面积/km2 341.85 617.44 854.98 1 314.54
占比/% 6.80 12.30 17.02 26.15
Tab.5  黄河三角洲土壤盐渍化面积和比例
Fig.6  现黄河入海口地表真彩色图像
研究区 方法 2006年 2012年 2017年 2020年
河口区 EI 较差
(0.20~
0.35)
较差
(0.20~
0.35)
较差
(0.20~
0.35)
较差
(0.20~
0.35)
OWBEI 较差
(0.31)
较差
(0.33)
较差
(0.34)
较差
(0.28)
垦利区 EI 一般
(0.35~
0.55)
一般
(0.35~
0.55)
一般
(0.35~
0.55)
一般
(0.35~
0.55)
OWBEI 一般
(0.37)
一般
(0.48)
一般
(0.46)
较差
(0.25)
Tab.6  2006年到2020年EI与OWBEI对比结果
Fig.7  土壤盐渍化等级图
Fig.8  OWBEI结果
Fig.9  现黄河入海口各生态指标的平均值
[1] Scudiero E, Skaggs T H, Corwin D L. Regional-scale soil salinity assessment using Landsat ETM+canopy reflectance[J]. Remote Sensing of Environment, 2015, 169:335-343.
doi: 10.1016/j.rse.2015.08.026
[2] Zhou X H, Zhang F, Liu C J, et al. Soil salinity inversion based on novel spectral index[J]. Environmental Earth Sciences, 2021, 80(16):501-514.
doi: 10.1007/s12665-021-09752-x
[3] Ivushkin K, Bartholomeus H, Bregt A K, et al. Global mapping of soil salinity change[J]. Remote Sensing of Environment, 2019, 231:111260.
doi: 10.1016/j.rse.2019.111260
[4] Zhuang Q W, Shao Z F, Huang X, et al. Evolution of soil salinization under the background of landscape patterns in the irrigated northern slopes of Tianshan Mountains,Xinjiang,China[J]. CATENA, 2021, 206:105561.
doi: 10.1016/j.catena.2021.105561
[5] Wang Z, Zhang F, Zhang X L, et al. Regional suitability prediction of soil salinization based on remote-sensing derivatives and optimal spectral index[J]. Science of The Total Environment, 2021, 775:145807.
doi: 10.1016/j.scitotenv.2021.145807
[6] Wang X P, Zhang F, Ding J L, et al. Estimation of soil salt content (SSC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR),Northwest China,based on a Bootstrap-BP neural network model and optimal spectral indices[J]. Science of The Total Environment, 2018, 615(15):918-930.
doi: 10.1016/j.scitotenv.2017.10.025
[7] Jin P B, Li P H, Wang Q, et al. Developing and applying novel spectral feature parameters for classifying soil salt types in arid land[J]. Ecological Indicators, 2015, 54:116-123.
doi: 10.1016/j.ecolind.2015.02.028
[8] Fan X W, Liu Y B, Tao J M, et al. Soil salinity retrieval from advanced multi-spectral sensor with partial least square regression[J]. Remote Sensing, 2015, 7(1):488-511.
doi: 10.3390/rs70100488
[9] Douaoui A, Nicolas H, Walter C. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data[J]. Geoderma, 2006, 134(1/2):217-230.
doi: 10.1016/j.geoderma.2005.10.009
[10] Khan N M, Rastoskuev V V, Sato Y, et al. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators[J]. Agricultural Water Management, 2005, 77(1/2/3):96-109.
doi: 10.1016/j.agwat.2004.09.038
[11] Khan N M, Rastoskuev V V, Shalina E V, et al. Mapping salt-affected soils using remote sensing indicators:A simple approach with the use of GIS IDRISI[C]// 22nd Asian Conference on Remote Sensing.Singapore, 2001:5-9.
[12] Major D J, Baret F, Guyot G. A ratio vegetation index adjusted for soil brightness[J]. International Journal of Remote Sensing, 1990, 11(5):727-740.
doi: 10.1080/01431169008955053
[13] Fourati H T, Bouaziz M, Benzina M, et al. Modeling of soil salinity within a semi-arid region using spectral analysis[J]. Arabian Journal of Geosciences, 2015, 8(12):11175-11182.
doi: 10.1007/s12517-015-2004-3
[14] Nguyen K A, Liou Y A, Tran H P, et al. Soil salinity assessment by using near-infrared channel and vegetation soil salinity index derived from Landsat8 OLI data:A case study in the Tra Vinh Province,Mekong Delta,Vietnam[J]. Progress in Earth and Planetary Science, 2022, 9(1):46.
doi: 10.1186/s40645-022-00505-3
[15] Elhag M. Evaluation of different soil salinity mapping using remote sensing techniques in arid ecosystems,Saudi Arabia[J]. Journal of Sensors, 2016:7596175.
[16] Jaafari A, Mafi-Gholami D, Pham B T, et al. Wildfire probability mapping:Bivariate vs.multivariate statistics[J]. Remote Sensing, 2019, 11(6):618.
doi: 10.3390/rs11060618
[17] Singh S, Raju N J, Ramakrishna C. Evaluation of groundwater quality and its suitability for domestic and irrigation use in parts of the Chandauli-Varanasi Region,Uttar Pradesh,India[J]. Journal of Water Resource and Protection, 2015, 7(7):572-587.
doi: 10.4236/jwarp.2015.77046
[18] Hu C. A novel ocean color index to detect floating algae in the global oceans[J]. Remote Sensing of Environment, 2009, 113(10):2118-2129.
doi: 10.1016/j.rse.2009.05.012
[19] Jiao Z J, Sun G Y, Zhang A Z, et al. Water benefit-based ecological index for urban ecological environment quality assessments[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:7557-7569.
doi: 10.1109/JSTARS.2021.3098667
[20] Liou Y, Le M S, Chien H. Normalized difference latent heat index for remote sensing of land surface energy fluxes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(3):1423-1433.
doi: 10.1109/TGRS.2018.2866555
[21] Shan W, Jin X B, Ren J, et al. Ecological environment quality assessment based on remote sensing data for land consolidation[J]. Journal of Cleaner Production, 2019, 239:118126.
doi: 10.1016/j.jclepro.2019.118126
[22] Tan J B, Li A N, Lei G B, et al. A novel and direct ecological risk assessment index for environmental degradation based on response curve approach and remotely sensed data[J]. Ecological Indicators, 2019, 98:783-793.
doi: 10.1016/j.ecolind.2018.11.038
[23] Piedallu C, Chéret V, Denux J P, et al. Soil and climate differently impact NDVI patterns according to the season and the stand type[J]. Science of the Total Environment, 2019, 651:2874-2885.
doi: 10.1016/j.scitotenv.2018.10.052
[24] Stefanov W L, Netzband M. Assessment of ASTER land cover and MODIS NDVI data at multiple scales for ecological characterization of an arid urban center[J]. Remote Sensing of Environment, 2005, 99(1/2):31-43.
doi: 10.1016/j.rse.2005.04.024
[25] Chen X L, Xu Y, Yang J X, et al. Remote sensing of urban thermal environments within local climate zones:A case study of two high-density subtropical chinese cities[J]. Urban Climate, 2020, 31:100568.
doi: 10.1016/j.uclim.2019.100568
[26] Ivits E, Cherlet M, Mehl W, et al. Estimating the ecological status and change of riparian zones in Andalusia assessed by multi-temporal AVHHR datasets[J]. Ecological Indicators, 2009, 9(3):422-431.
doi: 10.1016/j.ecolind.2008.05.013
[27] Li A H, Bo Y C, Chen L. Bayesian maximum entropy data fusion of field observed LAI and Landsat ETM+ derived LAI[C]// Proceedings of IEEE International Geoscience and Remote Sensing Symposium.Vancouver, 2011:2617-2620.
[28] Wang S D, Zhang X Y, Wu T X, et al. The evolution of landscape ecological security in Beijing under the influence of different policies in recent decades[J]. Science of the Total Environment, 2019, 646:49-57.
doi: 10.1016/j.scitotenv.2018.07.146
[29] Wu J J, Wang X, Zhong B, et al. Ecological environment assessment for Greater Mekong Subregion based on Pressure-State-Response framework by remote sensing[J]. Ecological Indicators, 2020, 117:106521.
doi: 10.1016/j.ecolind.2020.106521
[30] Zhou D Y, Chen T, Niu R Q, et al. Ecological environment assessment of mining area by using moving window-based remote sensing ecological index[C]// Proceedings of IEEE International Geoscience and Remote Sensing Symposium.Yokohama, 2019:9942-9945.
[31] Xu H Q, Wang M Y, Shi T T, et al. Prediction of ecological effects of potential population and impervious surface increases using a remote sensing based ecological index (RSEI)[J]. Ecological Indicators, 2018, 93:730-740.
doi: 10.1016/j.ecolind.2018.05.055
[32] Firozjaei M K, Fathololoumi S, Weng Q, et al. Remotely sensed urban surface ecological index (RSUSEI):An analytical framework for assessing the surface ecological status in urban environments[J]. Remote Sensing, 2020, 12(12):2029.
doi: 10.3390/rs12122029
[33] Bless A E, Colin F, Crabit A, et al. Landscape evolution and agricultural land salinization in coastal area:A conceptual model[J]. Science of the Total Environment, 2018, 625:647-656.
doi: 10.1016/j.scitotenv.2017.12.083
[34] Kingwell R, John M. The influence of farm landscape shape on the impact and management of dryland salinity[J]. Agricultural Water Management, 2007, 89(1/2): 29-38.
doi: 10.1016/j.agwat.2006.12.005
[35] 杨欢. 黄河三角洲湿地演变特征及生态系统健康评价研究[D], 郑州,华北水利水电大学, 2019.
Yang H. Characteristics and ecosystem health evaluation research of the Yellow River Delta wetland[J]. Zhengzhou:North China University of water Resources and Electric Power, 2019.
[36] 陈利顶, 傅伯杰. 黄河三角洲地区人类活动对景观结构的影响分析──以山东省东营市为例[J], 生态学报, 1996, 16(4):337-344.
Chen L D, Fu B J. Analysis of impact of human activity on landscape structare in Yellow River Delta:A case study of Dongying region[J]. Acta Ecologica Sinica, 1996, 16(4):337-344.
[37] Barsi J A, Schott J R, Palluconi F D, et al. An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument[C]// Proceedings of IEEE International Geoscience and Remote Sensing Symposium.Toulouse, 2003(5):3014-3016.
[38] Julia A B, John R S, Frank D P, et al. Validation of a web-based atmospheric correction tool for single thermal band instruments[C]// Proceedings of Spie the International Society for Optical Engineering.San Diego, 2005,58820.
[39] Jiang H N, Shu H. Optical remote-sensing data based research on detecting soil salinity at different depth in an arid-area oasis,Xinjiang,China[J]. Earth Science Informatics, 2019, 12(1):43-56.
doi: 10.1007/s12145-018-0358-2
[40] Yang X, Peng L H, Chen Y, et al. Air humidity characteristics of local climate zones:A three-year observational study in Nanjing[J]. Building and Environment, 2020, 171:106661.
doi: 10.1016/j.buildenv.2020.106661
[41] Liu C X, Wu X L, Wang L. Analysis on land ecological security change and affect factors using RS and GWR in the Danjiangkou Reservoir area,China[J]. Applied Geography, 2019, 105:1-14.
doi: 10.1016/j.apgeog.2019.02.009
[42] Sun G Y, Jiao Z J, Zhang A Z, et al. Hyperspectral image-based vegetation index (HSVI):A new vegetation index for urban ecological research[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 103: 102529.
doi: 10.1016/j.jag.2021.102529
[43] Chen L, Li M, Huang F, et al. Relationships of LST to NDBI and NDVI in Wuhan City based on Landsat ETM+ Image[C]// Proceedings of 2013 6th International Congress on Image and Signal Processing (CISP).Hangzhou, 2013:840-845.
[44] Vibhute A D, Dhumal R, Nagne A, et al. Evaluation of soil conditions using spectral indices from hyperspectral datasets[C]// Proceedings of 2017 2nd International Conference on Man and Machine Interfacing (MAMI).Bhubaneswar, 2017:1-6.
[45] Liang L, Di L P, Zhang L P, et al. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method[J]. Remote Sensing of Environment, 2015, 165:123-134.
doi: 10.1016/j.rse.2015.04.032
[46] Mao K, Qin Z, Shi J, et al. A practical split‐window algorithm for retrieving land‐surface temperature from MODIS data[J]. International Journal of Remote Sensing, 2005, 26(15):3181-3204.
doi: 10.1080/01431160500044713
[47] Sobrino J A, Jimenez-Munoz J C, Soria G, et al. Land surface emissivity retrieval from different VNIR and TIR sensors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(2):316-327.
doi: 10.1109/TGRS.36
[48] Sholehkerdar A, Tavakoli J, Liu Z. Theoretical analysis of Tsallis entropy-based quality measure for weighted averaging image fusion[J]. Information Fusion, 2020, 58:69-81.
doi: 10.1016/j.inffus.2019.12.010
[49] Wang Y H, Liu Y M. Bayesian entropy network for fusion of different types of information[J]. Reliability Engineering and System Safety, 2020, 195:106747.
doi: 10.1016/j.ress.2019.106747
[50] Li X F. TOPSIS model with entropy weight for eco geological environmental carrying capacity assessment[J]. Microprocessors and Microsystems, 2021:103805.
[51] Sreeparvathy V, Srinivas V V. A fuzzy entropy approach for design of hydrometric monitoring networks[J]. Journal of Hydrology, 2020, 586:124797.
doi: 10.1016/j.jhydrol.2020.124797
[52] Shen L Y, Zhou J Y, Xia B, et al. Application of a hybrid Entropy-McKinsey Matrix method in evaluating sustainable urbanization:A China case study[J]. Cities, 2015, 42:186-194.
doi: 10.1016/j.cities.2014.06.006
[53] 黄静, 赵庚星, 奚雪, 等. 光谱与纹理信息结合的黄河三角洲土壤盐渍化信息提取——以垦利区为例[J]. 农业资源与环境学报, 2022, 39(3):594-601.
Huang J, Zhao G X, Xi X, et al. Extraction of soil salinization information by combining spectral and texture data in the Yellow River Delta:A case study in Kenli District,Shandong Province[J]. Journal of Agricultural Resources and Environment, 2022, 39(3):594-601.
[54] 曹建荣, 刘文全, 黄翀, 等. 基于Landsat TM/ETM影像的黄河三角洲盐渍土动态变化分析[J]. 水土保持通报, 2014, 34(6):179-183,371.
Cao J R, Liu W Q, Huang C, et al. Analysis on dynamic variation of salinized soil in Yellow River Delta based on Landsat TM/ETM image[J]. Bulletin of Soil and Water Conservation, 2014, 34(6):179-183,371.
[1] 李光哲, 王浩, 曹银璇, 张晓宇, 宁晓刚. 长株潭城市群生态环境质量时空演变及影响因素分析[J]. 自然资源遥感, 2023, 35(4): 244-254.
[2] 王静, 王佳, 徐江琪, 黄邵东, 刘东云. 改进遥感生态指数的典型海岸带城市生态环境质量评价——以湛江市为例[J]. 自然资源遥感, 2023, 35(3): 43-52.
[3] 代云豪, 管瑶, 冯春涌, 蒋敏, 贺兴宏. 基于光谱指数建模的阿拉尔垦区土壤盐渍化信息提取与分析[J]. 自然资源遥感, 2023, 35(1): 205-212.
[4] 李星佑, 张飞, 王筝. 土壤盐渍化遥感监测模型构建方法现状与发展趋势[J]. 自然资源遥感, 2022, 34(4): 11-21.
[5] 张思源, 岳楚, 袁国礼, 袁帅, 庞文强, 李俊. 基于ENDVI-SI3特征空间的盐渍化反演模型及风险评估[J]. 自然资源遥感, 2022, 34(4): 136-143.
[6] 陈艳英, 马鑫程, 徐彦平, 王颖, 汪艳波. 地形及NDVI在林火遥感监测二次识别中应用的方法探讨[J]. 自然资源遥感, 2022, 34(3): 88-96.
[7] 姚金玺, 张志, 张焜. 基于GEE的诺木洪洪积扇植被时空变化特征、成因及趋势分析[J]. 自然资源遥感, 2022, 34(1): 249-256.
[8] 何陈临秋, 程博, 陈金奋, 张晓平. 基于GF-3全极化SAR数据的滨海湿地信息提取方法[J]. 自然资源遥感, 2021, 33(4): 105-110.
[9] 李阳, 袁琳, 赵志远, 张晋磊, 王宪业, 张利权. 基于无人机低空遥感和现场调查的潮滩地形反演研究[J]. 自然资源遥感, 2021, 33(3): 80-88.
[10] 吴霞, 王长军, 樊丽琴, 李磊. 基于多光谱遥感的盐渍化评价指数对宁夏银北灌区土壤盐度预测的适用性分析[J]. 国土资源遥感, 2021, 33(2): 124-133.
[11] 宋承运, 胡光成, 王艳丽, 汤超. 基于表观热惯量与温度植被指数的FY-3B土壤水分降尺度研究[J]. 国土资源遥感, 2021, 33(2): 20-26.
[12] 胡新宇, 许章华, 陈文慧, 陈秋霞, 王琳, 刘辉, 刘智才. 基于PROBA/CHRIS影像的归一化阴影植被指数NSVI构建与应用效果[J]. 国土资源遥感, 2021, 33(2): 55-65.
[13] 应奎, 李旭东, 程东亚. 岩溶槽谷流域生态环境质量的遥感评定[J]. 国土资源遥感, 2020, 32(3): 173-182.
[14] 王川, 范景辉, 林思美, 饶月明, 黄华国. 光学遥感植被指数与SAR遥感参数的相关性及其主要影响因素研究[J]. 国土资源遥感, 2020, 32(2): 130-137.
[15] 马超, 蔡盼丽. 徂徕山—莲花山地区环境生态指数时空变化与驱动因素分析[J]. 国土资源遥感, 2019, 31(4): 199-208.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发