Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (4): 124-134    DOI: 10.6046/zrzyyg.2023166
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
地块尺度农作物遥感分类及其不确定性分析
张冬韵1(), 吴田军2, 李曼嘉1, 郭逸飞1, 骆剑承1,3(), 董文1
1.中国科学院空天信息创新研究院遥感科学国家重点实验室, 北京 100101
2.长安大学土地工程学院, 西安 710064
3.中国科学院大学资源与环境学院, 北京 100049
Remote sensing-based classification of crops on a farmland parcel scale and uncertainty analysis
ZHANG Dongyun1(), WU Tianjun2, LI Manjia1, GUO Yifei1, LUO Jiancheng1,3(), DONG Wen1
1. State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences,Beijing 100101, China
2. School of Land Engineering, Chang’an University, Xi’an 710064, China
3. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(5680 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

利用遥感技术开展农作物空间分布的快速调查与精准制图是现代精细农业的一项基础工作。然而,由于遥感影像获取、处理与分析过程中的局限性,传统农作物种植结构遥感制图精度受到一定影响,亟须面向农作物分类开展不确定性的空间建模与特征分析。该文将耕地地块作为基本空间单元,选择宁夏引黄灌区作为试验区,利用多源遥感数据和机器学习算法实现地块尺度的农作物分类,进而基于混合熵构建不确定性计算模型,生成地块农作物类型不确定性空间分布,再利用多源辅助数据对地块农作物分类不确定性进行回归建模,探究相关地理变量的潜在影响。实验结果表明: ①耕地提取及分类环节共构建地块矢量单元149万个,总体作物分类精度达0.80,制图结果与实际农业耕作管理单元相匹配,分类效果较之传统的像素尺度方法更为理想; ②地块尺度的农作物分类不确定性总体较低,存在较为显著的类别差异,水稻、菜地、苜蓿分类不确定性较小,单种、复种小麦不确定性较高,玉米作物分类不确定性介于二类之间; ③地块级作物分类不确定性与种植结构、资源条件等多种环境因素有关,且与作物类型、水源可达性的相关性最为显著。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张冬韵
吴田军
李曼嘉
郭逸飞
骆剑承
董文
关键词 遥感农作物分类地块不确定性机器学习混合熵    
Abstract

The rapid survey and accurate mapping of the spatial distribution of crops using remote sensing are fundamental to modern precision agriculture. However, limitations in the acquisition, processing, and analysis of remote sensing images impact the mapping accuracy of traditional crop planting structures. Therefore, there is an urgent need to conduct spatial modeling and feature analysis for the uncertainty in crop classification. Using the Ningxia Yellow River irrigation area as a trial area and farmland parcels as the basic spatial units, this study classified crops on a parcel scale utilizing multi-source remote sensing data and machine learning algorithms. Then, an uncertainty calculation model was constructed based on mixed entropy, yielding the spatial distribution of the uncertainty of crop types in farmland parcels. Afterward, multi-source auxiliary data were employed to build a regression model for the uncertainty, and the potential impacts of related geographical variables on the uncertainty were explored. The experiment results indicate that 1.49 million vector units were constructed for the farmland parcels during the farmland extraction and classification session, yielding an overall crop classification accuracy of 0.80. The mapping results aligned well with the actual agricultural management units, and the classification results proved more better than the traditional pixel-based methods. The uncertainty in the parcel-scale crop classification was generally lower, with significant differences among crop types. The uncertainty was low for rice, vegetable plots, and alfalfa, relatively higher for wheat of single- and double-cropping patterns, and moderate for maize. The uncertainty in parcel-scale crop classification is influenced by various environmental factors such as planting structure and resource conditions, exhibiting the most significant correlations with crop type and water accessibility.

Key wordsremote sensing    crop classification    farmland parcel    uncertainty    machine learning    hybrid entropy
收稿日期: 2023-06-06      出版日期: 2024-12-23
ZTFLH:  TP79  
基金资助:国家重点研发计划项目“地理空间智能核心技术与软件系统”(2021YFB3900905)
通讯作者: 骆剑承(1970-),男,博士,研究员,从事遥感大数据智能计算研究。Email: luojc@aircas.ac.cn
作者简介: 张冬韵(1997-),女,硕士研究生,从事农业遥感研究。Email: zhangdongyun19@mails.ucas.ac.cn
引用本文:   
张冬韵, 吴田军, 李曼嘉, 郭逸飞, 骆剑承, 董文. 地块尺度农作物遥感分类及其不确定性分析[J]. 自然资源遥感, 2024, 36(4): 124-134.
ZHANG Dongyun, WU Tianjun, LI Manjia, GUO Yifei, LUO Jiancheng, DONG Wen. Remote sensing-based classification of crops on a farmland parcel scale and uncertainty analysis. Remote Sensing for Natural Resources, 2024, 36(4): 124-134.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023166      或      https://www.gtzyyg.com/CN/Y2024/V36/I4/124
Fig.1  本文研究方法的总体流程图
Fig.2  改进的RCF网络结构
Fig.3  研究区位置及Google Earth影像切片
Fig.4  研究区内耕地地块提取效果
Fig.5  2020年宁夏引黄灌区农作物分类结果
Fig.6  研究区地块尺度农作物分类的混合熵计算结果
Fig.7  地块尺度各农作物类型的不确定性分布概率密度曲线图
农作物
类型
混合熵均值 隶属度均值 F1 总体分
类精度
由低到
高排序
由高到
低排序
由高到
低排序
水稻 1.03 2 0.83 3 0.89 1 0.80
小麦单种 1.93 7 0.67 7 0.68 6
菜地 0.92 1 0.85 1 0.84 3
玉米 1.37 5 0.81 4 0.82 4
小麦复种 1.92 6 0.69 6 0.65 7
果园 1.29 4 0.79 5 0.86 2
苜蓿 1.04 3 0.85 2 0.79 5
Tab.1  地块尺度各农作物类型的不确定性对比分析
Fig.8  研究区主要农作物分类不确定性(混合熵)与最大隶属度的散点图
Fig.9  研究区内验证样本地块对各农作物类型的隶属度值分布
类型 变量 特征重要性 排名
种植结构 作物类型 0.27 1
地块形态 地块面积 0.10 7
地块周长 0.08 8
地块形状指数 0.14 3
样本特征 样本密度1 km 0.04 11
样本密度2.5 km 0.06 9
样本密度5 km 0.13 6
环境与农业
管理条件
灌溉渠网密度 0.14 4
交通路网密度 0.14 5
居民点密度 0.04 10
与水渠的距离 0.16 2
MSE 0.28 R2 0.68
Tab.2  随机森林回归模型对农作物分类不确定性进行建模生成的特征重要性
Fig.10  不同不确定性等级的水稻地块NDVI均值曲线
[1] Weiss M, Jacob F, Duveiller G. Remote sensing for agricultural applications:A meta-review[J]. Remote Sensing of Environment, 2020, 236:111402.
[2] 吴炳方, 张淼, 曾红伟, 等. 大数据时代的农情监测与预警[J]. 遥感学报, 2016, 20(5):1027-1037.
Wu B F, Zhang M, Zeng H W, et al. Agricultural monitoring and early warning in the era of big data[J]. Journal of Remote Sensing, 2016, 20(5):1027-1037.
[3] Mitchell P J, Downie A L, Diesing M. How good is my map? A tool for semi-automated thematic mapping and spatially explicit confidence assessment[J]. Environmental Modelling and Software, 2018, 108:111-122.
[4] Olofsson P, Foody G M, Herold M, et al. Good practices for estimating area and assessing accuracy of land change[J]. Remote Sensing of Environment, 2014, 148:42-57.
[5] 陈焕南, 林红燕, 邢海花. 遥感影像数据分类的不确定性分析及其处理方法综述[J]. 现代计算机, 2021, 27(31):33-39.
Chen H N, Lin H Y, Xing H H. Review of uncertainty analysis and processing methods of remote sensing image data classification[J]. Modern Computer, 2021, 27(31):33-39.
[6] Steele B M, Winne J C, Redmond R L. Estimation and mapping of misclassification probabilities for thematic land cover maps[J]. Remote Sensing of Environment, 1998, 66(2):192-202.
[7] Liu J J, Li Z, Qiao Y L, et al. A new method for cross-calibration of two satellite sensors[J]. International Journal of Remote Sensing, 2004, 25(23):5267-5281.
[8] Comber A, Fisher P, Brunsdon C, et al. Spatial analysis of remote sensing image classification accuracy[J]. Remote Sensing of Environment, 2012, 127:237-246.
[9] Yu Q, Gong P, Tian Y Q, et al. Factors affecting spatial variation of classification uncertainty in an image object-based vegetation mapping[J]. Photogrammetric Engineering and Remote Sensing, 2008, 74(8):1007-1018.
[10] 柏延臣, 王劲峰. 遥感数据专题分类不确定性评价研究:进展、问题与展望[J]. 地球科学进展, 2005, 20(11):1218-1225.
doi: 10.11867/j.issn.1001-8166.2005.11.1218
Bo Y C, Wang J F. Assessment on uncertainty in remotely sensed data classification:Progresses,problems and prospects[J]. Advance in Earth Sciences, 2005, 20(11):1218-1225.
[11] 郭逸飞, 吴田军, 骆剑承, 等. 基于不确定性迭代优化的山地植被遥感制图[J]. 地球信息科学学报, 2022, 24(7):1406-1419.
doi: 10.12082/dqxxkx.2022.210594
Guo Y F, Wu T J, Luo J C, et al. Remote sensing mapping of mountain vegetation via uncertainty-based iterative optimization[J]. Journal of Geo-Information Science, 2022, 24(7):1406-1419.
[12] Lyons M B, Keith D A, Phinn S R, et al. A comparison of resampling methods for remote sensing classification and accuracy assessment[J]. Remote Sensing of Environment, 2018, 208:145-153.
[13] Goodchild M F, Sun G, Yang S. Development and test of an error model for categorical data[J]. International Journal of Geographical Information Systems, 1992, 6(2):87-103.
[14] Brown K M, Foody G M, Atkinson P M. Estimating per-pixel thematic uncertainty in remote sensing classifications[J]. International Journal of Remote Sensing, 2009, 30(1):209-229.
[15] Comber A J. Geographically weighted methods for estimating local surfaces of overall,user and producer accuracies[J]. Remote Sensing Letters, 2013, 4(4):373-380.
[16] Khatami R, Mountrakis G, Stehman S V. Mapping per-pixel predicted accuracy of classified remote sensing images[J]. Remote Sen-sing of Environment, 2017, 191:156-167.
[17] Immitzer M, Vuolo F, Atzberger C. First experience with sentinel-2 data for crop and tree species classifications in central Europe[J]. Remote Sensing, 2016, 8(3):166.
[18] 孙营伟. 复杂成像条件下地块级作物种植结构遥感制图研究[D]. 北京: 中国科学院大学, 2020.
Sun Y W. Study on remote sensing mapping of plot-level crop planting structure under complex imaging conditions[D]. Beijing: University of Chinese Academy of Sciences, 2020.
[19] Liu Y, Cheng M M, Hu X, et al. Richer convolutional features for edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8):1939-1946.
doi: 10.1109/TPAMI.2018.2878849 pmid: 30387723
[20] 刘巍. 多源遥感协同的西南山地区耕地信息提取方法研究[D]. 北京: 中国科学院大学, 2021.
Liu W. Study on extraction method of cultivated land information in southwest mountainous area by multi-source remote sensing colla-boration[D]. Beijing: University of Chinese Academy of Sciences, 2021.
[21] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276
[22] 徐慧. 遥感影像不确定性对分类结果可靠性影响模式研究[D]. 武汉: 武汉大学, 2020.
Xu H. Exploration of the influence model remote sensing image uncertainty on classification[D]. Wuhan: Wuhan University, 2020.
[23] Shannon C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3):379-423.
[24] 吴浩, 程志萍, 史文中, 等. 遥感云分类不确定性的多维混合熵模型评价[J]. 测绘科学, 2016, 41(5):50-54,176.
Wu H, Cheng Z P, Shi W Z, et al. Evaluation on uncertainty of RS cloud classification based on multidimensional hybrid entropy mo-del[J]. Science of Surveying and Mapping, 2016, 41(5):50-54,176.
[25] 刘艳芳, 兰泽英, 刘洋, 等. 基于混合熵模型的遥感分类不确定性的多尺度评价方法研究[J]. 测绘学报, 2009, 38(1):82-87.
Liu Y F, Lan Z Y, Liu Y, et al. Multi-scale evaluation method for uncertainty of remote sensing classification based on hybrid entropy model[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(1):82-87.
[26] Smith J H, Stehman S V, Wickham J D, et al. Effects of landscape characteristics on land-cover class accuracy[J]. Remote Sensing of Environment, 2003, 84(3):342-349.
[27] Ortiz A, Oliver G. On the use of the overlapping area matrix for ima-ge segmentation evaluation:A survey and new performance measures[J]. Pattern Recognition Letters, 2006, 27(16):1916-1926.
[28] Foody G M. Status of land cover classification accuracy assessment[J]. Remote Sensing of Environment, 2002, 80(1):185-201.
[29] Grömping U. Variable importance assessment in regression:Linear regression versus random forest[J]. The American Statistician, 2009, 63(4):308-319.
[30] Löw F, Michel U, Dech S, et al. Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using support vector machines[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 85:102-119.
[1] 曲海成, 梁旭. 融合混合注意力机制与多尺度特征增强的高分影像建筑物提取[J]. 自然资源遥感, 2024, 36(4): 107-116.
[2] 康辉, 窦文章, 韩灵怡, 丁梓越, 吴亮廷, 侯璐. 基于DeepLabv3+模型的地表水体快速遥感监测[J]. 自然资源遥感, 2024, 36(4): 117-123.
[3] 潘俊杰, 慎利, 鄢薪, 聂欣, 董宽林. 一种基于对抗学习的高分辨率遥感影像语义分割无监督域自适应方法[J]. 自然资源遥感, 2024, 36(4): 149-157.
[4] 赵金玲, 黄健, 梁梓君, 赵学丹, 靳涛, 葛行行, 魏晓燕, 邵远征. 基于BDANet的地震灾害建筑物损毁评估[J]. 自然资源遥感, 2024, 36(4): 193-200.
[5] 庄会富, 王鹏, 苏亚男, 张祥, 范洪冬. 基于多源时序SAR数据的涿州洪涝淹没动态监测[J]. 自然资源遥感, 2024, 36(4): 218-228.
[6] 魏潇, 张立峰, 何毅, 曹胜鹏, 孙强, 高秉海. 2000—2020年黄河流域不同植被类型时空变化特征及其影响因素[J]. 自然资源遥感, 2024, 36(4): 229-241.
[7] 赵玉灵, 杨金中, 孙卫东, 于浩, 邢宇, 陈栋, 马新营, 王体鑫, 王聪. 伊犁河谷矿山地质环境评价分析与生态恢复治理对策[J]. 自然资源遥感, 2024, 36(4): 23-30.
[8] 祁昌炜, 董基恩, 程旭, 叶高峰, 何书跃, 代威, 汪冰. ZY-1 02D高光谱数据在柴北缘荒漠区蚀变矿物填图及找矿中的应用[J]. 自然资源遥感, 2024, 36(4): 31-42.
[9] 冯磊, 王轶, 李文吉, 王彦佐, 郑向向, 王珊珊, 张玲. 三维地质灾害隐患识别业务平台研发与应用[J]. 自然资源遥感, 2024, 36(4): 321-327.
[10] 邱骏挺, 李江坤, 葛藤菲, 木红旭, 芮歆旻, 杨云汉, 杨燕杰. 多源遥感信息在砂岩型铀矿勘查中的应用——以巴音戈壁盆地银根地区为例[J]. 自然资源遥感, 2024, 36(4): 43-54.
[11] 赖仕久, 胡晋山, 康建荣, 王小兵. 煤炭资源型区域生态环境演变研究——以山西省为例[J]. 自然资源遥感, 2024, 36(4): 62-74.
[12] 叶丽娟, 段霄龙, 李婷, 张静, 张云, 陈东磊. 河北省采矿损毁土地分布及治理状况分析[J]. 自然资源遥感, 2024, 36(4): 75-81.
[13] 骆振海, 张超, 冯绍元, 唐敏, 刘锐, 孔纪迎. 土壤盐渍化光学遥感监测方法研究进展[J]. 自然资源遥感, 2024, 36(4): 9-22.
[14] 凌肖露, 陈朝荣, 郭维栋, 秦凯, 张锦龙. ESA CCI土壤湿度资料在中国东部的综合评估[J]. 自然资源遥感, 2024, 36(4): 92-106.
[15] 孙禧勇, 刘稼丰, 范景辉, 张文凯, 石利娟, 邱玉宝, 朱发容. 积雪遥感监测产品研究与应用进展[J]. 自然资源遥感, 2024, 36(3): 13-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发