Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (6): 64-76    DOI: 10.6046/zrzyyg.2024342
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于Sentinel-2A/B数据构建水体指数的波段优选
夏兴生1,2,3(), 雷博洋1,2,3, 窦春娟1,2,3, 陈琼1,2,3, 潘耀忠1,4
1.青海师范大学青藏高原地表过程与生态保育教育部重点实验室,西宁 810016
2.青海师范大学地理科学学院 青海省自然地理与环境过程重点实验室,西宁 810016
3.青海师范大学高原科学与可持续发展研究院,西宁 810016
4.北京师范大学地理科学学部遥感科学国家重点实验室,北京 100875
Band selection optimization for constructing water indices based on Sentinel-2A/B data
XIA Xingsheng1,2,3(), LEI Boyang1,2,3, DOU Chunjuan1,2,3, CHEN Qiong1,2,3, PAN Yaozhong1,4
1. Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation (Ministry of Education), Qinghai Normal University, Xining 810016, China
2. Qinghai Provincial Key Laboratory of Physical Geography and Environmental Process, School of Geographical Science, Qinghai Normal University, Xining 810016, China
3. Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810016, China
4. State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
全文: PDF(20134 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

水体指数法因其简单高效,被广泛应用于监测识别地表水及其特征时空变化。随着较窄波段的多光谱传感器的发展,在各尺度水体监测中得到了广泛应用,但在大尺度水体监测中仍然存在水体指数在数据源发生变化时相近特征波段优选的问题。该文以归一化差值水体指数(normalized difference water index, NDWI )和改进的归一化差异水体指数(modified NDWI, MNDWI)为指导,基于谷歌地球引擎(Google Earth Engine,GEE)平台,利用基于Sentienl-2A/B多光谱传感器数据的绿波段和8个红波段构建水体指数,并应用大津算法(OSTU)对我国不同时间和空间范围内6个90 km×90 km研究样方进行水体识别提取。结果表明,在不同时间和空间范围内水体提取最优波段组合不同,对比以Sentienl-2A/B多光谱传感器数据构建的8个水体指数,B3和B11波段组合构建的水体指数结合OSTU算法在东北平原山区湖区、东部平原地区湖区、内蒙古高原湖区、云贵高原湖区、新疆地区湖区以及青藏高原湖区夏季都取得了相对最优的水体识别提取结果,且在春夏两季的总体精度(overall accuracy,OA)均高于90%,Kappa系数均大于0.9,说明B3和B11波段组合的水体指数也存在一定跨时间的适用性。该研究结果对于以水体提取监测为目标的传感器设计研发具有一定的参考,同时为基于较窄波段遥感数据水体监测提取应用的特征波段选择提供了参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏兴生
雷博洋
窦春娟
陈琼
潘耀忠
关键词 Sentinel-2A/B水体指数水体提取波段优选GEE    
Abstract

The simple and efficient water index method has been widely used to monitor and identify surface water along with its spatiotemporal variations. However, with the application of narrow-band multispectral sensors, this method faces a challenge in selecting optimal bands with similar features when the data source changes during large-scale water monitoring. Guided by the normalized difference water index (NDWI) and the modified NDWI (MNDWI), and based on the Google Earth Engine (GEE) platform, this study constructed water indices using the green bands and eight red bands from the Sentienl-2A/B multispectral sensor data. Employing Otsu's method, this study identified and extracted water bodies in six quadrats measuring 90 km × 90 km across different temporal and spatial ranges in China. The results indicate that the optimal band combination for water body extraction varied across different times and locations. Compared to the eight water indices constructed from the Sentienl-2A/B multispectral sensor data, the water index based on the combination of B3 and B11 bands, combined with Otsu's method, achieved optimal water identification and extraction results. These results were observed in summer in the lake regions of the Northeast China Plain and mountains, the eastern plains, the Inner Mongolian Plateau, the Yunnan-Guizhou Plateau, Xinjiang, and the Qinghai-Tibet Plateau. In both spring and summer, the water index based on the combination of B3 and B11 bands exhibited an overall accuracy (OA) exceeding 90% and a Kappa coefficient above 0.9, indicating its applicability across different time periods. Overall, the results of this study provide a reference for the design and development of sensors targeting water extraction and monitoring, and for feature band selection in water monitoring and extraction applications based on narrow-band remote sensing data.

Key wordsSentinel-2A/B    water index    water body extraction    band selection optimization    Google Earth Engine (GEE)
收稿日期: 2024-10-18      出版日期: 2025-12-31
ZTFLH:  TP79  
基金资助:国家自然科学基金青年科学基金项目“时空连续(2003-2022)的中国参考作物需水量(ET0)估算方法研究”(42201027);第二次青藏高原综合科学考察研究“土地利用变化及其环境效应”(2019QZKK0603)
作者简介: 夏兴生(1989-),男,博士,副教授,主要从事地理信息与遥感技术的教学与应用研究。Email: xxs@qhnu.edu.cn
引用本文:   
夏兴生, 雷博洋, 窦春娟, 陈琼, 潘耀忠. 基于Sentinel-2A/B数据构建水体指数的波段优选[J]. 自然资源遥感, 2025, 37(6): 64-76.
XIA Xingsheng, LEI Boyang, DOU Chunjuan, CHEN Qiong, PAN Yaozhong. Band selection optimization for constructing water indices based on Sentinel-2A/B data. Remote Sensing for Natural Resources, 2025, 37(6): 64-76.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024342      或      https://www.gtzyyg.com/CN/Y2025/V37/I6/64
Fig.1  研究样方
波段 中心波长/nm 光谱带
宽/nm
空间分
辨率/m
Bl(Coastal aerosol) 443.9/442.3 27/45 60
B2(Blue) 496.6/492.1 98/98 10
B3(Green) 560/559 45/46 10
B4(Red) 664.5/665 38/39 10
B5(Vegetation Red Edge) 703.9/703.8 19/20 20
B6(Vegetation Red Edge) 740.2/739.1 18/18 20
B7(Vegetation Red Edge) 782.5/779.7 28/28 20
B8(NIR) 835.1/833 145/133 10
B8A(Narrow NIR) 864.8/864 33/32 20
B9(Water Vapour) 945/943.2 26/27 60
B10(SWIR-Cirrus) 1 373.5/1 376.9 75/76 60
B11(SWIR) 1 613.7/1 610.4 143/141 20
B12(SWIR) 2 202.4/2 185.7 242/238 20
Tab.1  Sentinel-2A/B卫星多光谱数据参数
样方
1
2
3
4
5
6
Tab.2  光谱特征分析
Fig.2  6大样方8种指数像元变化
波段组合 样方1 样方2 样方3 样方4 样方5 样方6
B3B4
B3B5
B3B6
B3B7
B3B8
B3B8A
B3B11
B3B12
Tab.3  6大样方8种指数空间分布
类别 春季 夏季 秋季 冬季
样方1
B3B4
B3B5
B3B6
B3B7
B3B8
B3B8A
B3B11
B3B12
Tab.4  东北平原山区湖区样方水体提取结果
类别 春季 夏季 秋季 冬季
样方2
B3B4
B3B5
B3B6
B3B7
B3B8
B3B8A
B3B11
B3B12
Tab.5  东部平原地区湖区样方水体提取结果
类别 春季 夏季 秋季 冬季
样方3
B3B4
B3B5
B3B6
B3B7
B3B8
B3B8A
B3B11
B3B12
Tab.6  内蒙古高原湖区样方水体提取结果
类别 春季 夏季 秋季 冬季
样方4
B3B4
B3B5
B3B6
B3B7
B3B8
B3B8A
B3B11
B3B12
Tab.7  云贵高原地区湖区样方水体提取结果
类别 春季 夏季 秋季 冬季
样方5
B3B4
B3B5
B3B6
B3B7
B3B8
B3B8A
B3B11
B3B12
Tab.8  新疆地区湖区样方水体提取结果
类别 春季 夏季 秋季 冬季
样方6
B3B4
B3B5
B3B6
B3B7
B3B8
B3B8A
B3B11
B3B12
Tab.9  青藏高原地区湖区样方水体提取结果
Fig.3  6大样方水体提取精度评价结果
[1] Seelen L M S, Flaim G, Jennings E, et al. Saving water for the future:Public awareness of water usage and water quality[J]. Journal of Environmental Management, 2019,242:246-257.
[2] 李龙杰, 杨永辉. 基于Landsat8 OLI影像的常用水体指数法分类精度对比[J]. 中国科学院大学学报(中英文), 2024, 41(6):755-765.
Li L J, Yang Y H. Comparison study on classification accuracy of 11 common water indices based on Landsat8 OLI images[J]. Journal of University of Chinese Academy of Sciences, 2024, 41(6):755-765.
[3] Abdelmalik K W. Role of statistical remote sensing for inland water quality parameters prediction[J]. The Egyptian Journal of Remote Sensing and Space Science, 2018, 21(2):193-200.
doi: 10.1016/j.ejrs.2016.12.002
[4] Kasvi E, Salmela J, Lotsari E, et al. Comparison of remote sensing based approaches for mapping bathymetry of shallow,clear water rivers[J]. Geomorphology, 2019,333:180-197.
[5] Ma S F, Zhou Y T, Gowda P H, et al. Application of the water-related spectral reflectance indices:A review[J]. Ecological Indicators, 2019,98:68-79.
[6] McFeeters S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. Internatio-nal Journal of Remote Sensing, 1996, 17(7):1425-1432.
[7] Xu H Q. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006, 27(14):3025-3033.
doi: 10.1080/01431160600589179
[8] 闫霈, 张友静, 张元. 利用增强型水体指数(EWI)和GIS去噪音技术提取半干旱地区水系信息的研究[J]. 遥感信息, 2007, 22(6):62-67.
Yan P, Zhang Y J, Zhang Y. A study on information extraction of water system in semi-arid regions with the enhanced water index(EWI) and GIS based noise remove techniques[J]. Remote Sen-sing Information, 2007, 22(6):62-67.
[9] 许佳峰, 李云梅, 徐杰, 等. 黑臭水体水面阴影提取的自适应阈值算法研究[J]. 地球信息科学学报, 2020, 22(10):1959-1970.
doi: 10.12082/dqxxkx.2020.190489
Xu J F, Li Y M, Xu J, et al. Adaptive threshold for surface shadow detection of black and odor water[J]. Journal of Geo-Information Science, 2020, 22(10):1959-1970.
[10] 李艳华, 丁建丽, 闫人华. 基于国产GF-1遥感影像的山区细小水体提取方法研究[J]. 资源科学, 2015, 37(2):408-416.
Li Y H, Ding J L, Yan R H. Extraction of small river information based on China-made GF-1 remote sense images[J]. Resources Science, 2015, 37(2):408-416.
[11] Naik B C, Anuradha B. Time series analysis of water feature extraction using water index techniques from landsat remote sensing images[C]// 2019 Third International conference on I-SMAC (IoT in Social,Mobile,Analytics and Cloud) (I-SMAC).December 12-14,2019. Palladam,India.IEEE, 2019:478-482.
[12] 张磊, 宫兆宁, 王启为, 等. Sentinel-2影像多特征优选的黄河三角洲湿地信息提取[J]. 遥感学报, 2019, 23(2):313-326.
Zhang L, Gong Z N, Wang Q W, et al. Wetland mapping of Yellow River Delta wetlands based on multi-feature optimization of Sentinel-2 images[J]. Journal of Remote Sensing, 2019, 23(2):313-326.
[13] 王大钊, 王思梦, 黄昌. Sentinel-2和Landsat8影像的四种常用水体指数地表水体提取对比[J]. 国土资源遥感, 2019, 31(3):157-165.doi:10.6046/gtzyyg.2019.03.20.
Wang D Z, Wang S M, Huang C. Comparison of Sentinel-2 imagery with Landsat8 imagery for surface water extraction using four common water indexes[J]. Remote Sensing for Land and Resources, 2019, 31(3):157-165.doi:10.6046/gtzyyg.2019.03.20.
[14] 张磊, 韩秀珍, 翁富忠, 等. 基于Sentinel-2A MSI数据的水体信息提取算法对比研究[J]. 激光与光电子学进展, 2022, 59(12):505-515.
Zhang L, Han X Z, Weng F Z, et al. Comparison of water information extraction algorithms based on Sentinel-2A MSI data[J]. Laser and Optoelectronics Progress, 2022, 59(12):505-515.
[15] Lacaux J P, Tourre Y M, Vignolles C, et al. Classification of ponds from high-spatial resolution remote sensing:Application to Rift Valley Fever epidemics in Senegal[J]. Remote Sensing of Environment, 2007, 106(1):66-74.
doi: 10.1016/j.rse.2006.07.012
[16] Feyisa G L, Meilby H, Fensholt R, et al. Automated water extraction index:A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014,140:23-35.
[17] Work E A, Gilmer D S. Utilization of satellite data for inventorying prairie ponds and lakes[J]. Photogrammetric Engineering and Remote Sensing, 1976, 42(5):685-694.
[18] Rundquist D C, Lawson M P, Queen L P, et al. The relationship between summer-season rainfall events and lake-surface area[J]. JAWRA Journal of the American Water Resources Association, 1987, 23(3):493-508.
doi: 10.1111/jawr.1987.23.issue-3
[19] 冯思维, 杨清华, 贾伟洁, 等. 基于光学遥感的内陆地表水体提取综述[J]. 自然资源遥感, 2024, 36(3):41-56.doi:10.6046/zrzyyg.2023123.
Feng S W, Yang Q H, Jia W J, et al. Information extraction of inland surface water bodies based on optical remote sensing:A review[J]. Remote Sensing for Natural Resources, 2024, 36(3):41-56.doi:10.6046/zrzyyg.2023123.
[20] 张闻松, 宋春桥. 中国湖泊分布与变化:全国尺度遥感监测研究进展与新编目[J]. 遥感学报, 2022, 26(1):92-103.
Zhang W S, Song C Q. Spatial distribution and dynamics of lakes in China:Progress in remote sensing monitoring at national scale and new inventory of the maximum lake extent and change trajectory[J]. National Remote Sensing Bulletin, 2022, 26(1):92-103.
doi: 10.11834/jrs.20221290
[21] 王帆, 李崇贵, 马婷, 等. 一种改进的遥感影像水体信息快速提取方法[J]. 人民长江, 2021, 52(6):223-228.
Wang F, Li C G, Ma T, et al. A modified method for water body information rapid extracting from remote sensing image[J]. Yangtze River, 2021, 52(6):223-228.
[22] 白元明, 孔令成, 张志华, 等. 基于改进OTSU算法的快速作物图像分割[J]. 江苏农业科学, 2019, 47(24):231-236.
Bai Y M, Kong L C, Zhang Z H, et al. Segmentation of fast crop ima-ge based on improved OTSU algorithm[J]. Jiangsu Agricultural Sciences, 2019, 47(24):231-236.
[23] 汪恩良, 徐雷, 韩红卫, 等. 基于OTSU算法提取寒区河流流冰密度研究[J]. 应用基础与工程科学学报, 2021, 29(6):1429-1439.
Wang E L, Xu L, Han H W, et al. Extracting river ice concentration in cold regions based on the OTSU algorithm[J]. Journal of Basic Science and Engineering, 2021, 29(6):1429-1439.
[24] 刘东, 欧阳安, 陈聪, 等. 基于归一化植被指数的农田边界识别方法[J]. 江苏农业科学, 2022, 50(11):196-201.
Liu D, Ouyang A, Chen C, et al. Farmland boundary recognition method based on NDVI[J]. Jiangsu Agricultural Sciences, 2022, 50(11):196-201.
[25] 刘纪红, 王铖媛. 一种基于自适应阈值的图像二值化算法[C]// 2009中国控制与决策会议论文集·桂林, 2009:498-502.
Liu J H, Wang C Y. An image binarization algorithm based on adaptive threshold[C]// 2009 Proceedings of the Chinese Conference on Control and Decision·guilin, 2009:498-502.
[26] 刘玉梅. 不同水体提取方法的提取效果比较[J]. 陕西水利, 2021(11):104-106.
Liu Y M. Comparison of extraction effects of different water extraction methods[J]. Shaanxi Water Resources, 2021(11):104-106.
[27] 戴芹, 刘士彬, 刘巍. 基于GEE云平台和多源数据的土地覆盖智能分类算法对比研究[J]. 地理与地理信息科学, 2020, 36(6):26-31.
Dai Q, Liu S B, Liu W. Comparison of land cover intelligent classification algorithms based on GEE cloud platform and multi-source data[J]. Geography and Geo-Information Science, 2020, 36(6):26-31.
[28] Allouche O, Tsoar A, Kadmon R. Assessing the accuracy of species distribution models:Prevalence,Kappa and the true skill statistic (TSS)[J]. Journal of Applied Ecology, 2006, 43(6):1223-1232.
doi: 10.1111/jpe.2006.43.issue-6
[29] Niu Z G, Shan Y X, Gong P. Accuracy evaluation of two global land cover data sets over wetlands of China[J]. The-International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2012,39:223-228.
[30] 吴健平, 杨星卫. 遥感数据分类结果的精度分析[J]. 遥感技术与应用, 1995, 10(1):15-24.
Wu J P, Yang X W. Accuracy analysis of classification of remotely sensed data[J]. Remote Sensing Technology and Application, 1995, 10(1):15-24.
[1] 裴度, 袁武彬, 李恒凯. 基于长时序Landsat的南方丘陵山地带森林扰动分析[J]. 自然资源遥感, 2025, 37(6): 241-250.
[2] 张莹, 陈运春, 郭晓飞, 吴晓聪, 陈凤林, 曾维军. 基于改进DeepLabV3plus架构的洱海流域水体精细提取[J]. 自然资源遥感, 2025, 37(6): 201-210.
[3] 张念秋, 毛德华, 冯凯东, 甄佳宁, 相恒星, 任永星. 基于GEE与多源遥感数据的黄河三角洲湿地植物群落分类[J]. 自然资源遥感, 2025, 37(2): 265-273.
[4] 陈佳雪, 肖东升, 陈虹宇. 一种边界引导与跨尺度信息交互网络用于遥感影像水体提取[J]. 自然资源遥感, 2025, 37(1): 15-23.
[5] 陈媛媛, 严铄婷, 颜瑾, 郑思齐, 王昊, 朱杰. 基于Landsat时间序列影像和LandTrendr算法的浙江省丽水市森林扰动监测[J]. 自然资源遥感, 2025, 37(1): 179-187.
[6] 罗鑫, 王崇倡, 孙尚宇. 面向水体浅水区遥感识别的水体指数NMBWI研究[J]. 自然资源遥感, 2024, 36(4): 142-148.
[7] 冯思维, 杨清华, 贾伟洁, 王梦飞, 刘蕾. 基于光学遥感的内陆地表水体提取综述[J]. 自然资源遥感, 2024, 36(3): 41-56.
[8] 温泉, 李璐, 熊立, 杜磊, 刘庆杰, 温奇. 基于深度学习的遥感图像水体提取综述[J]. 自然资源遥感, 2024, 36(3): 57-71.
[9] 赵辉, 陈振, 冯超帆, 张通, 赵学晶, 张兆旭. 基于Landsat影像的鄱阳湖面积监测及其与水位关系研究[J]. 自然资源遥感, 2024, 36(2): 198-206.
[10] 宋英旭, 邹昱嘉, 叶润青, 贺志霞, 王宁涛. 利用GEE云平台实现三峡库区滑坡危险性动态分析[J]. 自然资源遥感, 2024, 36(1): 154-161.
[11] 王煜淼, 李胜, 东春宇, 杨刚. 多特征参数支持的红树林遥感信息提取——以广东省为例[J]. 自然资源遥感, 2024, 36(1): 95-102.
[12] 排日海·合力力, 昝梅. 干旱区绿洲城市生态环境时空格局变化及影响因子研究[J]. 自然资源遥感, 2023, 35(3): 201-211.
[13] 于森, 贾明明, 陈高, 鲁莹莹, 李毅, 张博淳, 路春燕, 李慧颖. 基于LandTrendr算法海南东寨港红树林扰动研究[J]. 自然资源遥感, 2023, 35(2): 42-49.
[14] 石敏, 李慧颖, 贾明明. 基于GEE云平台与Landsat数据的山口自然保护区红树林时空变化分析[J]. 自然资源遥感, 2023, 35(2): 61-69.
[15] 李叶繁, 王琳, 张冬珠. 光谱特征和空间卷积相协同的近岸海域养殖塘遥感信息提取[J]. 自然资源遥感, 2022, 34(4): 42-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发