Please wait a minute...
 
国土资源遥感  2010, Vol. 22 Issue (2): 102-106    DOI: 10.6046/gtzyyg.2010.02.22
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于土地利用变化和空间统计学的区域生态风险分析——以武汉市为例
杜军1, 杨青华2
1.河南省科学院地理研究所,郑州450000;
2.广西师范大学环境资源学院,桂林541004
An Analysis of Regional Ecological Risk Based on Land Use Change  and
Spatial Statistics: A Case Study in Wuhan, Hubei Province
DU Jun 1 , YANG Qing-hua 2
1. Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou 450000, China;2. College of Resource and Environmental Science, Guangxi Normal University, Guilin 541004, China
全文: PDF(1054 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

基于2000年、2005年TM影像获取的土地利用信息,以武汉市为研究区域,根据其土地利用结构特征,以GIS技术为数据分析平台,构造了综合性生态风险指数。同时利用空间分析方法对生态风险指数进行了变量空间化,通过对生态风险指数采样结果进行半变异函数分析和空间插值,编制了武汉生态风险程度分布图,以分析解释研究区的生态风险空间分布特征和形成机理。结果显示: 2000年、2005年研究区生态风险水平分为3个层次,广大的植被和水域集中分布区域属于低生态风险区,城市建成区和靠近城市建成区边缘形成中度生态风险和生态风险相对较高的分布区域。5 a内各个等级分布的空间也发生了一定程度的变化。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 遥感拦海大坝水文地质环境对策连云港    
Abstract

In this paper, Wuhan City was selected for case study. Land use information obtained from satellite remote sensing TM image in 2000 and 2005 was used as the main data source, and the GIS technology was employed as the data integration analysis platform. An ecological risk index was constructed based on the varieties of land use, and the systematic sampling method was utilized to make it a spatial variable. After the performance of sampling, the semivariagram analysis and block kriging were conducted to compile the map of ecological risk distribution. The results indicate that the spatial distribution of ecological risk became more uneven in the working area. The level of the ecological risk study area was divided into three levels: the majority of the vegetation and the waters belonged to the low ecological risk area, whereas the urban built-up area and its marginal areas belonged to moderate ecological risk and relatively high risk areas. Spatial distribution of areas of various levels experienced certain extent of changes in the five years.

Key wordsRemote sensing    The sea dam    The hydrological and geological environment    Proposal    Lianyungang
     出版日期: 2010-06-29
引用本文:   
杜军, 杨青华. 基于土地利用变化和空间统计学的区域生态风险分析——以武汉市为例[J]. 国土资源遥感, 2010, 22(2): 102-106.
DU Jun, YANG Qing-Hua. An Analysis of Regional Ecological Risk Based on Land Use Change  and
Spatial Statistics: A Case Study in Wuhan, Hubei Province. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(2): 102-106.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2010.02.22      或      https://www.gtzyyg.com/CN/Y2010/V22/I2/102
[1] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[2] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[3] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[4] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[5] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[6] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[7] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[8] 丁波, 李伟, 胡克. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演[J]. 自然资源遥感, 2022, 34(1): 10-17.
[9] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[10] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[11] 贺鹏, 童立强, 郭兆成, 涂杰楠, 王根厚. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264.
[12] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
[13] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
[14] 刘白露, 管磊. 南海珊瑚礁白化遥感热应力检测改进方法研究[J]. 自然资源遥感, 2021, 33(4): 136-142.
[15] 吴芳, 金鼎坚, 张宗贵, 冀欣阳, 李天祺, 高宇. 基于CZMIL测深技术的海陆一体地形测量初探[J]. 自然资源遥感, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发