Please wait a minute...
 
自然资源遥感  2021, Vol. 33 Issue (4): 136-142    DOI: 10.6046/zrzyyg.2020391
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
南海珊瑚礁白化遥感热应力检测改进方法研究
刘白露1(), 管磊1,2()
1.中国海洋大学信息科学与工程学部海洋技术学院/三亚海洋研究院,青岛/三亚 266100/572022
2.青岛海洋科学与技术国家实验室区域海洋动力学与数值模拟功能实验室,青岛 266237
An improved method for thermal stress detection of coral bleaching in the South China Sea
LIU Bailu1(), GUAN Lei1,2()
1. College of Marine Technology/Faculty of Information Science and Engineering/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266100/572024, China
2. Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
全文: PDF(4497 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

近年来受全球气候变暖等因素的影响,全球珊瑚礁白化事件频发,而美国国家海洋和大气管理局(National Oceanic and Atmospheric Administration,NOAA)的珊瑚礁监测(Coral Reef Watch, CRW)系统在南海的监测结果存在低估问题。文章基于1985年起的180例南海及周边海域的珊瑚礁白化相关报道,通过计算不同阈值组合的白化漏检率、误检率与准确率,评估得到最佳阈值组合,最终实现对南海珊瑚礁白化热应力检测的改进。实验结果表明: ①NOAA阈值对应的白化检测结果漏检率为70.70%,长期的白化低估现象确实存在; ②采用改进后的临界阈值(critical threshold,CT)与警报阈值(alert threshold,AT),可将白化检测准确率由58.13%提升至73.90%,同时漏检率与误检率均低于30%。通过2007年6月南沙群岛的白化事件,发现相较过去的低估,改进后的热应力指数能对事件做到有效检测,并能适时标记白化警报级别。结果证明热应力检测的改进方法能提高珊瑚白化监测水平,有利于南海珊瑚礁的管理与保护。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘白露
管磊
关键词 珊瑚礁白化南海遥感SST热应力    
Abstract

In recent years, coral bleaching events have frequently occurred globally due to global warming and other factors. However, the Coral Reef Watch (CRW) program established by the National Oceanic and Atmospheric Administration (NOAA) has underestimated the actual situation of coral bleaching in the South China Sea. Based on 180 cases of coral bleaching in the South China Sea and its surrounding waters since 1985, this paper obtains the optimum threshold combination by calculating the false negative rate (FNR), the false positive rate (FPR), and the accuracy (ACC) of different threshold combinations, thus improving the detection accuracy of coral bleaching events in the South China Sea. The results are as follows: (1) The FNR of the bleaching detecting results obtained using the NOAA threshold was 70.70%, indicating the long-term underestimation of the coral bleaching; (2) With the optimized critical threshold (CT) and alert threshold (AT), the ACC was improved from 58.13% to 73.90%, meanwhile the FNR and FPR were both less than 30%. As revealed by the coral bleaching event in the Nansha Islands in June 2007, the optimized thermal stress index can be used to effectively detect the event and mark the bleaching alarm level in time compared to the past underestimation. Therefore, the improved method for thermal threshold detection can improve the monitoring level of coral bleaching and are conducive to the management and protection of coral reefs in the South China Sea.

Key wordscoral bleaching    the South China Sea    remote sensing    SST    thermal stress
收稿日期: 2020-12-02      出版日期: 2021-12-23
ZTFLH:  TP79P76  
基金资助:自然资源部“全球变化与海气相互作用”专项项目“西太平洋东印度洋PACIND-YGST03区块海洋环境参数遥感调查Ⅱ期”(GASI-02-PACIND-YGST2-03)
通讯作者: 管磊
作者简介: 刘白露(1997-),女,博士研究生,主要从事海洋遥感研究。Email: bailu0126@stu.ouc.edu.cn
引用本文:   
刘白露, 管磊. 南海珊瑚礁白化遥感热应力检测改进方法研究[J]. 自然资源遥感, 2021, 33(4): 136-142.
LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2020391      或      https://www.gtzyyg.com/CN/Y2021/V33/I4/136
Fig.1  研究区主要珊瑚礁分布示意图[17]
级别 定义 对珊瑚礁的影响
无压力 Hotspot≤0
观察 0<Hotspot<CT
白化警告 HotspotCT,DHW<AT 可能发生白化
白化警报 HotspotCT,DHWAT 极易发生白化
Tab.1  白化热应力级别划分
Fig.2  不同阈值组合的漏检率与误检率
Fig.3  不同阈值组合的ACC
Fig.4  南海DHW分布
Fig.5  2007年6月19一25日最大白化区域级别[16]
[1] Reaka-Kudla M L. The global biodiversity of coral reefs:A comparison with rain forests[M]//Reaka-Kudla M L,Wilson E O.Biodiversity Understanding and Protecting Our Biological Resources, Washington D C: National Academy Press, 1997:83-108.
[2] 李淑, 余克服. 珊瑚礁白化研究进展[J]. 生态学报, 2007,27(5):2059-2069.
Li S, Yu K F. Recent development in coral reef bleaching research[J]. Acta Ecologica Sinica, 2007,27(5):2059-2069.
[3] Wells J W. Scleractinia[M]//Moore R C.Treatise on invertebrate paleontology,Part F,Coelenterata,Geological Society of America and University of Kansas Press,Lawrence, 1956:F328-F444.
[4] Burke L, Reytar K, Spalding M, et al. Reefs at risk revisited[M]. Washington D C:World Resources Institute, 2011:1-144.
[5] Blunden J, Arndt D. State of the climate in 2017[J]. Bulletin of the American Meteorological Society, 2018,99:Si-S332.
doi: 10.1175/2018BAMSStateoftheClimate.1
[6] Eakin C M, Sweatman H P A, Brainard R E. The 2014—2017 global-scale coral bleaching event:Insights and impacts[J]. Coral Reefs, 2019,38:539-545.
doi: 10.1007/s00338-019-01844-2
[7] 张乔民, 余克服, 施祺, 等. 中国珊瑚礁分布和资源特点[C]//全国海洋高新技术产业化论坛, 2005.
Zhang Q, Yu K, Shi Q, et al. Distribution and resource characteristics of coral reefs in China[C]//National marine high tech industrialization forum, 2005.
[8] 余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应[J]. 中国科学:地球科学, 2012,42(8):1160-1172.
Yu K F. Coral reefs in the South China Sea:Their response to and records on past environmental changes[J]. Science China Earth Sciences, 2012,42(8):1160-1172.
[9] Glynn P W, D’Croz L. Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality[J]. Coral Reefs, 1990,8:181-191.
doi: 10.1007/BF00265009
[10] Berkelmans R, Willis B L. Seasonal and local spatial patterns in the upper thermal limits of corals on the inshore Central Great Barrier Reef[J]. Coral Reefs, 1999,18(3):219-228.
doi: 10.1007/s003380050186
[11] Strong A E, Liu G, Kimura T, et al. Detecting and monitoring 2001 coral reef bleaching events in Ryukyu Islands,Japan using satellite bleaching HotSpot remote sensing technique[C]//Proceedings of 2002 IEEE International Geoscience and Remote Sensing Symposium.Toronto:IEEE, 2002:237-239.
[12] Manzello D P, Berkelmans R, Hendee J C. Coral bleaching indices and thresholds for the Florida Reef Tract,Bahamas,and St.Croix,US Virgin Islands[J]. Marine Pollution Bulletin, 2007,54(12):1923-1931.
pmid: 17931666
[13] Donner S D. An evaluation of the effect of recent temperature variability on the prediction of coral bleaching events[J]. Ecological Applications, 2011,21:1718-1730.
doi: 10.1890/10-0107.1
[14] Kleypas J A, Danabasoglu G, Lough J M. Potential role of the ocean thermostat in determining regional differences in coral reef bleaching events[J]. Geophysical Research Letters, 2008,35(3):L03613
[15] Kumagai N H, Yamano H, Sango-Map-Project C. High-resolution modeling of thermal thresholds and environmental influences on coral bleaching for local and regional reef management[J]. Peerj, 2018,6:e4382.
doi: 10.7717/peerj.4382
[16] 李淑, 余克服, 陈天然, 等. 珊瑚共生虫黄藻密度结合卫星遥感分析2007年南沙群岛珊瑚热白化[J]. 科学通报, 2011,56(10):747-755.
Li S, Yu K F, Chen T R, et al. Assessment of coral bleaching using symbiotic zooxanthellae density and satellite remote sensing data in the Nansha Islands,South China Sea[J]. Chinese Science Bulletin, 2011,56(10):747-755.
[17] Maturi E, Harris A, Mittaz J, et al. A new high-resolution sea surface temperature blended analysis[J]. Bulletin of the American Meteorological Society, 2017,98(5):1015-1026.
doi: 10.1175/BAMS-D-15-00002.1
[18] Reefbase[DB/OL].[2020-08-10]. http://reefbase.org/main.aspx.
[19] Donner S D, Rickbeil G J M, Heron S F. A new,high-resolution global mass coral bleaching database[J]. Plos One, 2017,12(4):e0175490.
doi: 10.1371/journal.pone.0175490
[20] Wilkinson C. Status of coral reefs of the world:1998[M]. Cape Ferguson,Queensland,and Dampier,Western Australia:Australian Institute of Marine Science, 1998.
[21] Wilkinson C. Status of coral reefs of the world:2002[M]. Perth,Western Australia:Australian Institute of Marine Science, 2002.
[22] Wilkinson C. Status of coral reefs of the world:2008[M]. Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre,Townsville,Australia, 2008: 296.
[23] Zuo X, Su F, Shi W, et al. The 2014 thermal stress event on offshore archipelagoes in the South China Sea[C]//IEEE International Geoscience & Remote Sensing Symposium.IEEE, 2015.
[24] 汤超莲, 李鸣, 郑兆勇, 等. 近45年涠洲岛5次珊瑚热白化的海洋站SST指标变化趋势分析[J]. 热带地理, 2010,30(06):577-581,586.
Tang C L, Li M, Zheng Z Y, et al. An analysis on the trend of sea surface temperature indices for coral hot bleaching in Weizhou Island ocean observation station during 1966—2009[J]. Tropical Geography, 2010,30(06):577-581,586.
[25] Li X, Liu S, Huang H, et al. Coral bleaching caused by an abnormal water temperature rise at Luhuitou fringing reef,Sanya Bay,China[J]. Aquatic Ecosystem Health and Management, 2012,15(2):227-233.
doi: 10.1080/14634988.2012.687651
[26] 陈标. 西沙群岛2010年珊瑚热白化卫星遥感监测[C]//Proceedings of 2012 International Conference on Earth Science and Remote Sensing(ESRS 2012), 2012.
Chen B. Satellite remote sensing monitoring coral bleaching during the 2010 bleaching event at Parcel Islands,South China Sea[C]//Proceedings of 2012 International Conference on Earth Science and Remote Sensing (ESRS 2012), 2012.
[27] Liu G, Heron S F, Eakin C M, et al. Reef-scale thermal stress monitoring of coral ecosystems:New 5-km global products from NOAA Coral Reef Watch[J]. Remote Sensing, 2014,6(12):1579-1160.
[28] Heron S F, Liu G, Eakin C M, et al. Climatology development for NOAA Coral Reef Watch’s 5-km product suite[R]//NOAA Technical Report NESDIS 145.NOAA/NESDIS.College Park, MD. 2015,21.
[29] Liu G, Rauenzahn J L, Heron S F, et al. NOAA Coral Reef Watch 50 km satellite sea surface temperature-based decision support system for coral bleaching management[R]//NOAA Technical Report NESDIS 143;NOAA/NESDIS:College Park,MD,USA, 2013,33.
[1] 王建强, 邹朝晖, 刘荣波, 刘志松. 基于U2-Net深度学习模型的沿海水产养殖塘遥感信息提取[J]. 自然资源遥感, 2023, 35(3): 17-24.
[2] 唐晖, 邹娟, 尹向红, 余姝辰, 贺秋华, 赵动, 邹聪, 罗建强. 基于高分遥感的洞庭湖区河湖采砂监管及典型案例分析[J]. 自然资源遥感, 2023, 35(3): 302-309.
[3] 于航, 安娜, 汪洁, 邢宇, 许文佳, 步凡, 王晓红, 杨金中. 黔西南采煤塌陷区高分遥感动态监测——以六盘水市煤矿采空塌陷区为例[J]. 自然资源遥感, 2023, 35(3): 310-318.
[4] 王静, 王佳, 徐江琪, 黄邵东, 刘东云. 改进遥感生态指数的典型海岸带城市生态环境质量评价——以湛江市为例[J]. 自然资源遥感, 2023, 35(3): 43-52.
[5] 徐欣钰, 李小军, 赵鹤婷, 盖钧飞. NSCT和PCNN相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3): 64-70.
[6] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[7] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[8] 董婷, 符潍奇, 邵攀, 高利鹏, 武昌东. 基于改进全连接条件随机场的SAR影像变化检测[J]. 自然资源遥感, 2023, 35(3): 134-144.
[9] 郭晓萌, 方秀琴, 杨露露, 曹煜. 基于人工神经网络的西辽河流域根区土壤湿度估算[J]. 自然资源遥感, 2023, 35(2): 193-201.
[10] 方贺, 张育慧, 何月, 李正泉, 樊高峰, 徐栋, 张春阳, 贺忠华. 浙江省植被生态质量时空变化及其驱动因素分析[J]. 自然资源遥感, 2023, 35(2): 245-254.
[11] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[12] 马世斌, 皮英楠, 王佳, 张焜, 李生辉, 彭玺. 基于遥感的绿色勘查高效监管方法体系研究[J]. 自然资源遥感, 2023, 35(2): 255-263.
[13] 王平. 热红外遥感技术在钢铁去产能监测中的应用[J]. 自然资源遥感, 2023, 35(2): 271-276.
[14] 李天驰, 王道儒, 赵亮, 凡仁福. 基于Landsat8遥感数据的西沙群岛永乐环礁底质分类与变化分析[J]. 自然资源遥感, 2023, 35(2): 70-79.
[15] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发