Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (2): 152-161    DOI: 10.6046/zrzyyg.2021202
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于多维卷积神经网络的多源高分辨率卫星影像茶园分类
廖廓1,2(), 聂磊3, 杨泽宇4(), 张红艳3, 王艳杰3, 彭继达1,2, 党皓飞1,2, 冷伟3
1.福建省气象科学研究所,福州 350008
2.武夷山国家气候观象台,武夷山 354300
3.武汉珈和科技有限公司,武汉 430200
4.浙江万维空间信息技术有限公司,南京 210012
Classification of tea garden based on multi-source high-resolution satellite images using multi-dimensional convolutional neural network
LIAO Kuo1,2(), NIE Lei3, YANG Zeyu4(), ZHANG Hongyan3, WANG Yanjie3, PENG Jida1,2, DANG Haofei1,2, LENG Wei3
1. Fujian Institute of Meteorological Sciences, Fuzhou 350008, China
2. Wuyi Mountain National Climate Observatory, Wuyishan 354300, China
3. Wuhan Jiahe Technology Co., Ltd., Wuhan 430200, China
4. Zhejiang Wanwei Spatial Information Technology Co., Ltd., Nanjing 210012, China
全文: PDF(6846 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

武夷山市地形条件、茶园种植结构复杂,云雨天气多、卫星影像难获取。针对单一影像源茶园难提取的问题,以武夷山市新田镇为研究区,综合Sentinel-2影像的光谱信息和Google影像的纹理特征,提出一种基于多源高分辨率卫星影像和多维卷积神经网络(multidimensional multi-source convolutional neural networks, MM-CNN)的茶园分类方法。该方法以一维和二维卷积神经网络为基础,根据不同分辨率的影像,通过建立2种模型,分别提取茶园及疑似区域,并融合2个模型结果,最终得到茶园分布,以相对经济、高效的方式完成研究区茶园分布的高精度提取。结果表明,MM-CNN融合多源高分辨率影像进行茶园提取的空间分布精度优于单一影像源方法,MM-CNN方法具有一定的普适性和鲁棒性,为南方丘陵山区大范围高效监测茶园分布情况提供了方法参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
廖廓
聂磊
杨泽宇
张红艳
王艳杰
彭继达
党皓飞
冷伟
关键词 武夷山市茶园卷积神经网络语义分割U-Net1D-CNNSentinel-2Google影像    
Abstract

The terrain conditions and tea plantation structure of Wuyishan City are complex, with cloudy and rainy weather, so it is difficult to obtain satellite images here. To address the problem of difficult extraction of tea gardens from a single image source, we investigated the spectral information of Sentinel-2 images and the texture features of Google images in Xintian Town, Wuyishan City, coupled with which a tea garden classification method based on multi-source high-resolution satellite images and multidimensional convolutional neural networks (MM-CNN) was established. In this method, tea gardens and suspected tea gardens were extracted, respectively, with two models developed with images with different spatial resolutions, based on one- and two-dimensional CNN. Results obtained with the two CNN models were combined, and the high-accuracy distribution of tea gardens in the study area was generated in a relatively economical and efficient way. The results showed that the spatial distribution accuracy of the tea gardens identified by MM-CNN is better than that of the single image source method. The MM-CNN method is highly universal and robust and provides a reference method for efficiently monitoring the distribution of tea gardens in large-scale hilly areas of South China.

Key wordsWuyishan City    tea garden    convolutional neural network    semantic segmentation    U-Net    1D-CNN    Sentinel-2    Google image
收稿日期: 2021-06-30      出版日期: 2022-06-20
ZTFLH:  TP79  
基金资助:福建省气象局开放式研究基金项目“遥感与机器算法对厦门城市PM2.5浓度预测研究”(2020KX03);福建省气象局开放式研究基金项目“基于误差理论的全球蒸散发产品武夷山季风变化敏感区质量评估研究”(2021kfm03)
通讯作者: 杨泽宇
作者简介: 廖 廓(1978-),男,硕士,高级工程师,主要从事生态遥感研究。Email: 85832679@qq.com
引用本文:   
廖廓, 聂磊, 杨泽宇, 张红艳, 王艳杰, 彭继达, 党皓飞, 冷伟. 基于多维卷积神经网络的多源高分辨率卫星影像茶园分类[J]. 自然资源遥感, 2022, 34(2): 152-161.
LIAO Kuo, NIE Lei, YANG Zeyu, ZHANG Hongyan, WANG Yanjie, PENG Jida, DANG Haofei, LENG Wei. Classification of tea garden based on multi-source high-resolution satellite images using multi-dimensional convolutional neural network. Remote Sensing for Natural Resources, 2022, 34(2): 152-161.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021202      或      https://www.gtzyyg.com/CN/Y2022/V34/I2/152
Fig.1  研究区域Google影像、野外调查图斑及地面真实标签制作区域
Fig.2  实调区地物在不同月份光谱曲线图
Fig.3  实调区地物光谱反射率时间变化曲线
Fig.4  研究区茶园典型纹理特征
Fig.5  1D-CNN网络结构
Fig.6  U-Net网络结构
Fig.7  本研究茶园分布提取流程
Fig.8  分类结果后处理前后对比图
区域
序号
原始影像 地面真实标签 分类结果
Google影像 2019年12月13日
Sentinel-2影像
MM-CNN方法 U-Net方法 1D-CNN方法
区域1
区域2
区域3
区域4
Tab.1  不同方法茶园分类结果
模型 MM-CNN U-Net 1D-CNN
F1值 0.96 0.84 0.87
OA/% 94.10 79.87 82.90
Kappa 0.86 0.59 0.63
IoU 0.92 0.72 0.77
Tab.2  不同茶园提取方法精度结果
Fig.9  研究区茶园分类结果
[1] 李龙伟, 李楠, 陆灯盛. 多时相Sentinel-2影像在浙西北茶园信息提取中的应用[J]. 浙江农林大学学报, 2019, 36(5):841-848.
Li L W, Li N, Lu D S. Mapping tea gardens spatial distribution in northwestern Zhejiang Province using multi-temporal Sentinel-2 imagery[J]. Journal of Zhejiang A & F University, 2019, 36(5):841-848.
[2] Phan P, Chen N, Xu L, et al. Using multi-temporal MODIS NDVI data to monitor tea status and forecast yield:A case study at Tanuyen,Laichau,Vietnam[J]. Remote Sensing, 2020, 12(11):1814.
doi: 10.3390/rs12111814
[3] Das A C. Integrating an expert system,GIS,and satellite remote sensing to evaluate land suitability for sustainable tea production in Bangladesh[J]. Remote Sensing, 2020, 12(24):25.
doi: 10.3390/rs12010025
[4] 何小娟. 名山县茶园生态系统碳汇能力分析[D]. 成都: 四川农业大学, 2013.
He X J. Analysis the carbon sequestration capacity of the tea plantation of Mingshan County[D]. Chengdu: Sichuan Agricultural University, 2013.
[5] 赵晓晴, 王萍, 荆林海, 等. 时序Sentinel-2A影像光谱特征的茶园提取应用[J]. 测绘科学, 2020, 264(6):84-92.
Zhao X Q, Wang P, Jing L H, et al. The application of spectral characteristics of time series Sentinel-2A images in tea land extraction[J]. Science of Surveying and Mapping, 2020, 264(6):84-92.
[6] Zhu J, Pan Z, Wang H, et al. An improved multi-temporal and multi-feature tea plantation identification method using Sentinel-2 imagery[J]. Sensors, 2019, 19(9):2087.
doi: 10.3390/s19092087
[7] Huang Y, Li S, Yuang L, et al. Estimating tea plantation area based on multi-source satellite data[C]// 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), 2019.
[8] 杨艳魁, 陈芸芝, 吴波, 等. 基于高分二号影像结合纹理信息的茶园提取[J]. 江苏农业科学, 2019, 47(2):210-214.
Yang Y K, Chen Y Z, Wu B, et al. Extraction of tea plantation image based on GF-2 image and texture information[J]. Jiangsu Agricultural Sciences, 2019, 47(2):210-214.
[9] 徐伟燕, 孙睿, 金志凤. 基于资源三号卫星影像的茶树种植区提取[J]. 农业工程学报, 2016(s1):161-168.
Xu W Y, Sun R, Jin Z F. Extracting tea plantations based on ZY-3 satellite data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016(s1):161-168.
[10] Blaschke T, Hay G J, Kelly M, et al. Geographic object-based image analysis-Towards a new paradigm-sciencedirect[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87:180-191.
doi: 10.1016/j.isprsjprs.2013.09.014
[11] 陈慧, 江洪, 蒋世豪. 面向对象最优分割尺度下的茶园提取[J]. 测绘与空间地理信息, 2020, 43(12):17-20.
Chen H, Jiang H, Jiang S H. Tea plantation extraction under object-oriented optimal segmentaton scale[J]. Geomatics & Spatial Information Technology, 2020, 43(12):17-20.
[12] 吴锦玉. 基于高分遥感影像纹理空间模式增强的非参数化茶园识别方法研究[D]. 昆明: 云南师范大学, 2020.
Wu J Y. Research on non-parametric tea garden recognition method based on texture spatial model enhancement of high-resolution remote sensing image[D]. Kunming: Yunnan Noraml Univerity, 2020.
[13] Jamil A, Bayram B. The delineation of tea gardens from high resolution digital orthoimages using mean-shift and supervised machine learning methods[J]. Geocarto International, 2021, 36(7):758-772.
doi: 10.1080/10106049.2019.1622597
[14] 许光明. 基于面向对象和多源数据融合的茶园遥感提取研究[D]. 西安: 陕西师范大学, 2016.
Xu G M. Research on tea garden remote sensing extraction based on object-oriented and multi-Metadata[D]. Xi’an: Shaanxi Normal University, 2016.
[15] 马超, 杨飞, 王学成. 基于中尺度光谱和时序物候特征提取南方丘陵山区茶园[J]. 国土资源遥感, 2019, 31(1):141-148.doi: 10.6046/gtzyyg.2019.01.19.
doi: 10.6046/gtzyyg.2019.01.19
Ma C, Yang F, Wang X C. Extracting tea plantations in southern hilly and mountainous region based on mesoscale spectrum and temporal phenological features[J]. Remote Sensing for Land and Resources, 2019, 31(1):141-148.doi: 10.6046/gtzyyg.2019.01.19.
doi: 10.6046/gtzyyg.2019.01.19
[16] 姚建华, 吴加敏, 杨勇, 等. 全卷积神经网络下的多光谱遥感影像分割[J]. 中国图象图形学报, 2020, 25(1):180-192.
Yao J H, Wu J M, Yang Y, et al. Segmentation in multi-spectral remote sensing images using the fully convolutional neural network[J]. Jounrnal of Image and Graphics, 2020, 25(1):180-192.
[17] Huang X, Zhu Z R, Li Y S, et al. Tea garden detection from high-resolution imagery using a scene-based framework[J]. Photogrammetric Engineering & Remote Sensing, 2018, 84(11):723-731.
[18] 王小芹, 张志梅, 王常颖. 基于多尺度词包表示的hLDA模型的茶园识别研究[J]. 青岛大学学报(自然科学版), 2020, 131(3):32-37,46.
Wang X Q, Zhang Z M, Wang C Y, High resolution remote sensing image recognition of tea plantation based on hierarchical latent Dirichlet allocation model[J]. Journal of Qingdao University(Natural Science Edition), 2020, 131(3):32-37,46.
[19] 朱泽润. 基于高分辨率遥感影像的茶园场景提取方法[D]. 武汉: 武汉大学, 2018.
Zhu Z R. Tea garden scene detection from high-resolution remote sensing imagery[D]. Wuhan: Wuhan University, 2018.
[20] 陈厚坤, 孙仁诚. 基于深度学习的遥感图像茶园区域识别应用研究[J]. 工业控制计算机, 2020, 33(2):93-94,96.
Chen H K, Sun R C. Tea plantation classification techonology using remote sensing image based deep learning[J]. Industrial Control Computer, 2020, 33(2):93-94,96.
[21] Tang Z, Li M, Wang X. Mapping tea plantations from VHR images using OBIA and convolutional neural networks[J]. Remote Sensing, 2020, 12(18):2935.
doi: 10.3390/rs12182935
[22] Jamil A, Bayram B. Automatic discriminative feature extraction using convolutional neural network for remote sensing image classification[C]// The 40th Asian Conference on Remote Sensing, 2019.
[23] 黄邵东, 徐伟恒, 吴超, 等. 遥感在茶园监测中的应用研究进展[J]. 西部林业科学, 2020(2):1-9.
Huang S D, Xu W H, Wu C, et al. Research progress of remote sensing on tea plantation monitoring[J]. Journal of West China Forestry Science, 2020(2):1-9.
[24] 叶元高, 李远华. 武夷山茶产业发展现状与措施[J]. 台湾农业探索, 2016(4):59-63.
Ye Y G, Li Y H. Development status of tea industry in Wuyishan City and its countermeasures[J]. Taiwan Agricultural Research, 2016(4):59-63.
[25] Li Z, Chen G, Zhang T. A CNN-transformer hybrid approach for crop classification using multitemporal multisensor images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:847-858.
doi: 10.1109/JSTARS.2020.2971763
[26] Ronneberger O, Fischer P, Brox T. U-Net:Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer,Cham, 2015.
[27] Bodansky E, Gribov A, Pilouk M. Smoothing and compression of lines obtained by raster-to-vector conversion[C]// Graphics Recognition Algorithms & Applications,International Workshop,Grec,Kingston,Ontario,Canada,September,Selected Papers.Springer-Verlag, 2001.
[28] 杨泽宇, 张洪艳, 明金, 等. 深度学习在高分辨率遥感影像冬油菜提取中的应用[J]. 测绘通报, 2020, 522(9):113-116.
Yang Z Y, Zhang H Y, Ming J, et al. Extraction of winter rapeseed from high-resolution remote sensing imagery via deep learning[J]. Bulletin of Surveying and Mapping, 2020, 522(9):113-116.
[29] 武夷山市统计局. 武夷山统计年鉴——2020[M]. 北京: 中国统计出版社, 2020.
Statistical Bureau of Wuyishan City. Statistics yearbook of Wuyishan[M]. Beijing: China Statistics Press, 2020.
[30] 刘岳明, 杨晓梅, 王志华, 等. 基于深度学习RCF模型的三都澳筏式养殖区提取研究[J]. 海洋学报, 2019, 41(4):119-130.
Liu Y M, Yang X M, Wang Z H, et al. Extracting raft aquaculture areas in Sanduao from high-resolution remote sensing images using RCF[J]. Haiyang Xuebao, 2019, 41(4):119-130.
[1] 伍炜超, 叶发旺. 面向多背景环境的Sentinel-2云检测[J]. 自然资源遥感, 2023, 35(3): 124-133.
[2] 林佳惠, 刘广, 范景辉, 赵红丽, 白世彪, 潘宏宇. 联合改进U-Net模型和D-InSAR技术采矿沉陷提取方法[J]. 自然资源遥感, 2023, 35(3): 145-152.
[3] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[4] 侯英卓, 纪灵, 邢前国, 盛德志. 卫星遥感辅助的大型海藻养殖动态对比监测——以威海市为例[J]. 自然资源遥感, 2023, 35(2): 34-41.
[5] 郑宗生, 刘海霞, 王振华, 卢鹏, 沈绪坤, 唐鹏飞. 改进3D-CNN的高光谱图像地物分类方法[J]. 自然资源遥感, 2023, 35(2): 105-111.
[6] 孙盛, 蒙芝敏, 胡忠文, 余旭. 多尺度轻量化CNN在SAR图像地物分类中的应用[J]. 自然资源遥感, 2023, 35(1): 27-34.
[7] 田晨, 张金龙, 金义蓉, 董世元, 王彬, 张乃祥. 一种利用贝叶斯优化的蓝藻遥感分类方法[J]. 自然资源遥感, 2023, 35(1): 49-56.
[8] 胡建文, 汪泽平, 胡佩. 基于深度学习的空谱遥感图像融合综述[J]. 自然资源遥感, 2023, 35(1): 1-14.
[9] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
[10] 孟琮棠, 赵银娣, 韩文泉, 何晨阳, 陈锡秋. 基于RandLA-Net的机载激光雷达点云城市建筑物变化检测[J]. 自然资源遥感, 2022, 34(4): 113-121.
[11] 沈骏翱, 马梦婷, 宋致远, 柳汀洲, 张微. 基于深度学习语义分割模型的高分辨率遥感图像水体提取[J]. 自然资源遥感, 2022, 34(4): 129-135.
[12] 苏玮, 林阳阳, 岳文, 陈颖彪. 基于U-Net卷积神经网络的广东省海水养殖区识别及其时空变化遥感监测[J]. 自然资源遥感, 2022, 34(4): 33-41.
[13] 王华俊, 葛小三. 一种轻量级的DeepLabv3+遥感影像建筑物提取方法[J]. 自然资源遥感, 2022, 34(2): 128-135.
[14] 杨昭颖, 韩灵怡, 郑向向, 李文吉, 冯磊, 王轶, 杨永鹏. 基于卷积神经网络的遥感影像及DEM滑坡识别——以黄土滑坡为例[J]. 自然资源遥感, 2022, 34(2): 224-230.
[15] 孔爱玲, 张承明, 李峰, 韩颖娟, 孙焕英, 杜漫飞. 基于知识引导的遥感影像融合方法[J]. 自然资源遥感, 2022, 34(2): 47-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发