Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (3): 196-205    DOI: 10.6046/zrzyyg.2023101
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于机载LiDAR技术植被茂密区小型滑坡识别与评价
陈刚1(), 郝社锋1, 蒋波1, 喻永祥1, 车增光1, 刘汉湖2(), 杨容浩2
1.江苏省地质调查研究院,南京 210018
2.成都理工大学地球科学学院,成都 610059
Identification and assessment of small landslides in densely vegetated areas based on airborne LiDAR technique
CHEN Gang1(), HAO Shefeng1, JIANG Bo1, YU Yongxiang1, CHE Zengguang1, LIU Hanhu2(), YANG Ronghao2
1. Geological Survey of Jiangsu Province, Nanjing 210018, China
2. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
全文: PDF(21757 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

山体滑坡会导致生命和财产损失,获取完整的滑坡空间分布图及对易发区域的准确判定有利于指导生产、生活和生态空间优化。在滑坡调查过程中,茂密的植被覆盖使滑坡调查难度加大,机载激光雷达(light detection and ranging,LiDAR)技术的穿透能力使真实地形特征得以呈现,从而实现植被茂密区滑坡识别。该文通过仿地飞行获取研究区LiDAR点云数据,基于点云数据得到数字高程模型(digital elevation model,DEM),在山体阴影分析、彩色增强显示及三维场景模拟基础上,识别出区域内已有滑坡的位置与规模,经野外核实,滑坡解译精度为86.4%。针对滑坡易发区评价问题,以现有滑坡为样本,首次采用遥感分类思维开展滑坡易发区划定,采用小区域内与滑坡发育有关的高程、坡度和地表起伏度组合成影像,以支持向量机为分类方法,判定出滑坡易发区域,经滑坡检验样本分析,滑坡识别精度为81.91%。研究表明: 基于高精度的LiDAR数据及其视觉增强后的图像能识别小型滑坡,采用支持向量机分类法可以准确确定滑坡易发区,为下一步三生空间规划与优化提供依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈刚
郝社锋
蒋波
喻永祥
车增光
刘汉湖
杨容浩
关键词 LiDAR滑坡山体阴影支持向量机滑坡易发性评价    
Abstract

Landslides may cause the loss of lives and property, and an accurate and complete map showing the spatial distribution of landslides and the determination of landslide susceptibility areas assist in guiding the optimization of the production, living, and ecological spaces. However, landslide investigations are complicated by dense vegetation. LiDAR technology enables the presentation of actual terrain features, thereby achieving landslide identification in densely vegetated areas. This study obtained the LiDAR point cloud data of the study area through ground-imitating flight and then built a digital elevation model (DEM) through data processing. Then, based on mountain shadow analysis, color-enhanced presentation, and 3D scene simulation, the locations and scales of existing landslides in the study area were identified. The field verification revealed an interpretation accuracy of landslides of up to 86.4%. For the assessment of landslide susceptibility areas, this study, with existing landslides as samples, delineated landslide susceptibility areas through remote sensing classification for the first time. Specifically, images were synthesized using the landslide-related elevations, slopes, and surface undulations, and then landslide susceptibility areas were determined using the support vector machine (SVM) classification method. The analysis of the inspection samples reveals a landslide identification accuracy of 81.91%. The results show that the image identification based on high-accuracy LiDAR data and visually enhanced images allows for the delineation of small landslides and that the SVM classification method enables the accurate location of landslide susceptibility areas. This study provides a basis for the future planning and optimization of the production, living, and ecological spaces.

Key wordsLiDAR    landslide    mountain shadow    SVM    landslide susceptibility area
收稿日期: 2023-04-18      出版日期: 2024-09-03
ZTFLH:  TP79  
基金资助:江苏省地质灾害风险普查省级技术支持项目(苏自然资函〔2021〕1420号)
通讯作者: 刘汉湖(1978-),男,博士,教授,主要从事遥感地质方面的教学和科研工作。Email: liuhanhu@cdut.edu.cn
作者简介: 陈 刚(1987-),男,硕士,高级工程师,主要从事于地质灾害调查与评价、水文地质与工程地质的研究。Email: 504739487@qq.com
引用本文:   
陈刚, 郝社锋, 蒋波, 喻永祥, 车增光, 刘汉湖, 杨容浩. 基于机载LiDAR技术植被茂密区小型滑坡识别与评价[J]. 自然资源遥感, 2024, 36(3): 196-205.
CHEN Gang, HAO Shefeng, JIANG Bo, YU Yongxiang, CHE Zengguang, LIU Hanhu, YANG Ronghao. Identification and assessment of small landslides in densely vegetated areas based on airborne LiDAR technique. Remote Sensing for Natural Resources, 2024, 36(3): 196-205.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023101      或      https://www.gtzyyg.com/CN/Y2024/V36/I3/196
Fig.1  研究区地理位置示意
Fig.2  LiDAR数据采集与处理流程
Fig.3  研究区原始点云及地面点提取效果
Fig.4  双向山体阴影图和多向山体阴影图中光线模拟方向
Fig.5  SVM的基本思想示意图
Fig.6  不同制作方式下的山体阴影图
Fig.7-1  彩色增强显示效果图
Fig.7-2  彩色增强显示效果图
Fig.8  研究区野外踏勘滑坡照片
Fig.9  小型滑坡遥感解译特征
Fig.10  滑坡易发区分布
[1] 张勤, 赵超英, 陈雪蓉. 多源遥感地质灾害早期识别技术进展与发展趋势[J]. 测绘学报, 2022, 51(6):885-896.
doi: 10.11947/j.AGCS.2022.20220132
Zhang Q, Zhao C Y, Chen X R. Technical progress and development trend of geological hazards early identification with multi-source remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6):885-896.
doi: 10.11947/j.AGCS.2022.20220132
[2] 杨长江, 易祎, 赵蓉. 基于Sentinel-1数据的时序InSAR技术在滑坡监测方面的应用——以巴东地区为例[J]. 科技创新与生产力, 2017, 279(4):55-58,63.
Yang C J, Yi Y, Zhao R. Monitoring landslide movements using time series InSAR with sentinel-1:Application to Badong area[J]. Sci-Tech Innovation and Productivity, 2017, 279(4):55-58,63.
[3] 李显巨. 基于LiDAR技术的复杂地质环境区滑坡识别研究[D]. 武汉: 中国地质大学, 2012.
Li X J. Research of the landslide recognition based on LiDAR technology in the complex geological environment area master candidate[D]. Wuhan: China University of Geosciences, 2012.
[4] 许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 2019, 44(7):957-966.
Xu Q, Dong X J, Li W L. Integrated space-air-ground early detection,monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):957-966.
[5] 董秀军, 许强, 佘金星, 等. 九寨沟核心景区多源遥感数据地质灾害解译初探[J]. 武汉大学学报(信息科学版), 2020, 45(3):432-441.
Dong X J, Xu Q, She J X, et al. Preliminary study on interpretation of geological hazards in Jiuzhaigou based on multi-source remote sensing data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3):432-441.
[6] Chigira M, Duan F, Yagi H, et al. Using an airborne laser scanner for the identification of shallow landslides and susceptibility assessment in an area of ignimbrite overlain by permeable pyroclastics[J]. Landslides, 2004, 1(3):203-209.
[7] Haneberg W C, Creighton A L, Medley E W, et al. Use of LiDAR to assess slope hazards at the Lihir gold mine,Papua New Guinea[C]// International Conference on Landslide Risk Management,Vancouver,British Columbia, 2005:1-10.
[8] Razak K A, Santangelo M, Van Westen C J, et al. Generating an optimal DTM from airborne laser scanning data for landslide mapping in a tropical forest environment[J]. Geomorphology, 2013, 190:112-125.
[9] Ju L Y, Zhang L M, Xiao T. Power laws for accurate determination of landslide volume based on high-resolution LiDAR data[J]. Engineering Geology, 2023, 312:106935.
[10] 邵延秀, 张波, 邹小波, 等. 采用无人机载LiDAR进行快速地质调查实践[J]. 地震地质, 2017, 39(6):1185-1197.
doi: 10.3969/j.issn.0253-4967.2017.06.007
Shao Y X, Zhang B, Zou X B, et al. Application of UAVLS to rapid geological surveys[J]. Seismology and Geology, 2017, 39(6):1185-1197.
[11] 王绚, 范宣梅, 杨帆, 等. 植被茂密山区地质灾害遥感解译方法研究[J]. 武汉大学学报(信息科学版), 2020, 45(11):1771-1781.
Wang X, Fan X M, Yang F, et al. Remote sensing interpretation method of geological hazards in lush mountainous area[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11):1771-1781.
[12] 佘金星, 许强, 杨武年, 等. 九寨沟地震地质灾害隐患早期识别与分析研究[J]. 工程地质学报, 2023, 31(1):207-216.
She J X, Xu Q, Yang W N, et al. Early identification and analysis of earthquake and geological hazards in Jiuzhaigou[J]. Journal of Engineering Geology, 2023, 31(1):207-216.
[13] 彭艺伟, 董琦, 田冲, 等. 基于机载激光雷达的地质灾害识别关键技术及应用研究[J]. 安全与环境工程, 2021, 28(6):100-108.
Peng Y W, Dong Q, Tian C, et al. Research on key technologies and application of geological hazard identification based on airborne LiDAR[J]. Safety and Environmental Engineering, 2021, 28(6):100-108.
[14] 郭晨, 许强, 董秀军, 等. 复杂山区地质灾害机载激光雷达识别研究[J]. 武汉大学学报(信息科学版), 2021, 46(10):1538-1547.
Guo C, Xu Q, Dong X J, et al. Geohazard recognition by airborne LiDAR technology in complex mountain areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1538-1547.
[15] 邓博, 张会, 柏君, 等. 利用机载LiDAR的深圳斜坡类地质灾害危险性评价[J/OL]. 武汉大学学报(信息科学版):1-18 [2023-03-01].https://doi.org/10.13203/j.whugis20220141.
Deng B, Zhang H, Bai J, et al. Hazard evaluation of the slope in Shenzhen based on airborne LiDAR data[J/OL]. Geomatics and Information Science of Wuhan University:1-18 [2023-03-01].https://doi.org/10.13203/j.whugis20220141.
[16] Mark R K. A multidirectional,oblique-weighted,shaded-relief image of the island of Hawaii[R] Open-file Report, 1992.
[17] Chiba T, Kaneta S, Suzuki Y. Red relief image map: New visualization method for three dimensional data[J]. The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2008, 37(b2): 1071-1076
[18] 王涛, 吴树仁, 石菊松. 国际滑坡风险评估与管理指南研究综述[J]. 地质通报, 2009, 28(8):1006-1019.
Wang T, Wu S R, Shi J S. A review of international landslide risk assessment and management guidelines[J]. Geological Bulletin of China, 2009, 28(8):1006-1019.
[19] 邹富宝, 付卓, 樊风雷, 等. 基于频率比与AHP模型的西藏东部地区滑坡易发性评价[J]. 自然灾害学报, 2023, 32(2):235-242.
Zou F B, Fu Z, Fan F L, et al. Evaluation of landslide susceptibility in eastern Tibet based on frequency ratio and AHP model[J]. Journal of Natural Disasters. 2023, 32(2):235-242.
[20] 刘纪平, 梁恩婕, 徐胜华, 等. 顾及样本优化选择的多核支持向量机滑坡灾害易发性分析评价[J]. 测绘学报, 2022, 51(10):2034-2045.
doi: 10.11947/j.AGCS.2022.20220326
Liu J P, Liang E J, Xu S H, et al. Multi-kernel support vector machine considering sample optimization selection for analysis and evaluation of landslide disaster susceptibility[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10):2034-2045.
doi: 10.11947/j.AGCS.2022.20220326
[21] 张玺国, 周雄冬, 徐梦珍, 等. 西藏地质灾害易发性及对水能开发适宜度影响[J]. 地理学报, 2022, 77(7):1603-1614.
doi: 10.11821/dlxb202207003
Zhang X G, Zhou X D, Xu M Z, et al. Distribution of hydropower development suitability in Tibet in the face of geological hazard susceptibility[J]. Acta Geographica Sinica, 2022, 77(7):1603-1614.
doi: 10.11821/dlxb202207003
[22] 成淑艳, 曹生奎, 曹广超, 等. 基于高分辨率遥感影像的青海湖沙柳河流域土地覆盖监督分类方法对比[J]. 水土保持通报, 2018, 38(5):261-268,353.
Cheng S Y, Cao S K, Cao G C, et al. Comparisons of supervised classification methods for land cover based on high spatial resolution remote sensing images in Shaliu River basin of Qinghai Lake[J]. Bulletin of Soil and Water Conservation, 2018, 38(5):261-268,353.
[23] 李鹏, 蒋宁桑, 封志明, 等. 基于支持向量机的老挝丰沙里省新开辟刀耕火种遥感监测及其空间特征[J]. 遥感学报, 2022, 26(11):2329-2343.
Li P, Jiang N S, Feng Z M, et al. Freshly-opened swidden mapping using support vector machine (SVM)and spatial characteristics in Phongsaly Province,Laos[J]. National Remote Sensing Bulletin, 2022, 26(11): 2329-2343.
[24] Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297.
[25] 薛永安, 邹友峰, 张文志, 等. 基于SVM的地下采煤区沉陷灾害发育敏感性分区研究[J]. 煤田地质与勘探, 2022, 50(10):108-118.
Xue Y A, Zou Y F, Zhang W Z, et al. SVM-based sensitivity zoning of subsidence disaster development in the underground coal mining areas[J]. Coal Geology and Exploration, 2022, 50(10): 108-118.
[26] 童立强, 郭兆成. 典型滑坡遥感影像特征研究[J]. 国土资源遥感, 2013, 25(1):86-92.doi: 10.6046/gtzyyg.2013.01.16.
Tong L Q, Guo Z C. A study of remote sensing image features of typical landslides[J]. Remote Sensing for Land and Resources, 2013, 25(1):86-92.doi: 10.6046/gtzyyg.2013.01.16.
[1] 武德宏, 郝利娜, 严丽华, 唐烽顺, 郑光. 金沙江滑坡群InSAR探测与形变因素分析[J]. 自然资源遥感, 2024, 36(3): 259-266.
[2] 白石, 唐攀攀, 苗朝, 金彩凤, 赵博, 万昊明. 基于高分辨率遥感影像和改进U-Net模型的滑坡提取——以汶川地区为例[J]. 自然资源遥感, 2024, 36(3): 96-107.
[3] 张利军, 贺思睿, 张建东, 彭光雄, 徐质彬, 谢渐成, 唐凯, 卜建财. 多源遥感技术支持下的滑坡地灾隐患识别——以常澧地区为例[J]. 自然资源遥感, 2024, 36(2): 173-187.
[4] 杨帆, 马志刚, 文艳, 董杰, 姜清辉. 联合SAR影像相位和幅度信息的多形变量级滑坡监测——以金沙江白格滑坡为例[J]. 自然资源遥感, 2024, 36(2): 257-267.
[5] 蔡建澳, 明冬萍, 赵文祎, 凌晓, 张雨, 张星星. 基于综合遥感的察隅县滑坡隐患识别及致灾机理分析[J]. 自然资源遥感, 2024, 36(1): 128-136.
[6] 宋英旭, 邹昱嘉, 叶润青, 贺志霞, 王宁涛. 利用GEE云平台实现三峡库区滑坡危险性动态分析[J]. 自然资源遥感, 2024, 36(1): 154-161.
[7] 余绍淮, 徐乔, 余飞. 联合光学和SAR遥感影像的山区公路滑坡易发性评价方法[J]. 自然资源遥感, 2023, 35(4): 81-89.
[8] 赵华伟, 周林, 谭明伦, 汤明高, 童庆刚, 秦佳俊, 彭宇辉. 基于光学遥感和SBAS-InSAR的川渝输电网滑坡隐患早期识别[J]. 自然资源遥感, 2023, 35(4): 264-272.
[9] 李志新, 王梦飞, 贾伟洁, 纪松, 王宇飞. 一种结合阴影信息的建筑物层数识别方法[J]. 自然资源遥感, 2023, 35(3): 97-106.
[10] 陈昊宇, 项磊, 高贺, 牟金燚, 索晓晶, 滑博伟. 基于分数阶微分的土壤全氮高光谱反演[J]. 自然资源遥感, 2023, 35(3): 170-178.
[11] 李晨辉, 郝利娜, 许强, 王一, 严丽华. 面向对象的高分辨率遥感影像地震滑坡分层识别[J]. 自然资源遥感, 2023, 35(1): 74-80.
[12] 张雨, 明冬萍, 赵文祎, 徐录, 赵治, 刘冉. 基于高分光学卫星影像的泸定地震型滑坡提取与分析[J]. 自然资源遥感, 2023, 35(1): 161-170.
[13] 贺鹏, 颜瑜严, 文艳, 马志刚, 焦其松, 郭兆成, 莫悠. 机载LiDAR技术在缓倾地层滑坡及其拉裂槽识别中的应用[J]. 自然资源遥感, 2022, 34(4): 307-316.
[14] 赵连杰, 吴孟泉, 郑龙啸, 栾绍鹏, 赵贤峰, 薛明月, 刘佳燕, 刘晨曦. 胶东半岛北部海岸线时空变迁及驱动分析[J]. 自然资源遥感, 2022, 34(4): 87-96.
[15] 邓静雯, 田义超, 张强, 陶进, 张亚丽, 黄升光. 机载LiDAR在红树林林分平均高估算中的应用[J]. 自然资源遥感, 2022, 34(3): 129-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发