Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (1): 142-151    DOI: 10.6046/zrzyyg.2023284
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
Sentinel-1/2影像在兰州北山削山造地范围识别中的应用
牛全福1,2,3(), 雷姣姣1, 刘博1, 王浩1, 张瑞珍1, 王刚1
1.兰州理工大学土木工程学院,兰州 730050
2.甘肃省应急测绘工程研究中心,兰州 730050
3.甘肃大禹九洲空间信息科技有限公司院士专家工作站,兰州 730050
Application of Sentinel-1/2 imagery in identifying hills cutting and land reclaiming in the Beishan Mountain of Lanzhou
NIU Quanfu1,2,3(), LEI Jiaojiao1, LIU Bo1, WANG Hao1, ZHANG Ruizhen1, WANG Gang1
1. School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2. Emergency Mapping Engineering Research Center of Gansu Province, Lanzhou 730050, China
3. Academician Expert Workstation of Gansu Dayu Jiuzhou Space Information Technology Co., Ltd., Lanzhou 730050, China
全文: PDF(3247 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

城市空间发展易受地形所限,削山造地能克服土地资源稀缺,成为解决城市空间拓展最为直接的途径。该方法利用遥感技术快速准确获取削山造地范围信息,对区域生态环境科学评估和新城发展规划具有十分重要的意义。本文基于GEE遥感云计算平台,利用Sentinel-1 合成孔径雷达(synthetic aperture Rader,SAR)数据,采用组合升、降轨影像,在噪声滤除和多时相影像合成的基础上,计算削山造地前后后向散射强度的差值,并采用百分位阈值法结合样本数据确定阈值,提取研究区2017—2022年削山造地开挖区时空分布;然后联合SAR和光学数据的光谱特征、纹理特征和地形特征,在特征优化的基础上结合随机森林算法获取了2017—2022年逐年削山造地范围时空分布。研究结果表明:①提取的开挖区范围总体分类精度和Kappa系数分别达85%和0.83。②研究期间,发现2019年前开挖区主要集中在九州开发区、碧桂园和保利领秀山,2020年以后新增加了刘家沟、水源站等开挖区,开挖范围和强度逐渐增大。③2018年前造地规模较小,面积为2.655 km2;2019年以后造地规模逐年增大,特别是2021年,其造地面积达12.607 km2,占监测期间总造地面积的34.56%,2022年在原造地基础上开挖,因坡度和开挖量逐渐增大,造地面积仅2.686 km2。本文构建的削山造地开挖区监测和造地范围提取方法可有效获取削山和造地范围快速监测与提取。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牛全福
雷姣姣
刘博
王浩
张瑞珍
王刚
关键词 削山造地Sentinel影像多时相变化监测随机森林    
Abstract

Hills cutting and land reclaiming (HCLR) serves as the most direct way for cities that are constrained by terrain to overcome land scarcity and facilitate urban spatial expansion. Obtaining the range of HCLR quickly and accurately using remote sensing technology is significant for assessing the regional ecosystem and new city development planning scientifically. Based on the Google Earth Engine (GEE) cloud computing platform for remote sensing, as well as multi-temporal data from Sentinel-1 SAR and Sentinel-2 multispectral imager (MSI), this study determined the spatiotemporal distribution of the 2017—2022 HCLR range in the study area using multi-temporal change monitoring and a random forest algorithm. Using a combination of Sentinel-1 ascending and descending images and based on noise filtering and multi-temporal image synthesis, this study calculated the difference in the backscattering intensity before and after HCLR. Then, the excavation range was determined using a threshold determined using the percentile threshold method combined with sample data. The results demonstrate that this method exhibited high operability, with an overall classification accuracy and Kappa coefficient of 85% and 0.83, respectively. By monitoring multi-temporal changes in the VH polarization band of Sentinel-1 and using a combination of Sentinel-1 ascending and descending images, this study acquired the spatial distribution of excavation areas within the study area from 2017 to 2022. Before 2019, the excavation areas were primarily concentrated in Jiuzhou Development Zone, Country Garden, and Poly Lingxiu Mountain. After 2020, new excavation areas, such as Liujiagou and Shuiyuan Station, emerged, with the scope and intensity of excavation gradually increasing. By combining the spectral, texture, and topographic features of SAR and optical data and based on feature optimization combined with a random forest algorithm, this study determined the spatial distribution of yearly HCLR from 2017 to 2022. Before 2018, the HCLR scale was small, with an area of 2.655 km2. After 2019, the scale increased each year, especially in 2021, when the area reached 12.607 km2, accounting for 34.56% of the total land reclamation area during the monitoring period. In 2022, the reclamation area obtained through further excavation on previously reclaimed land was estimated at only 2.686 km2 due to the increasing slope and excavation volume. The method developed in this study for monitoring excavation areas and extracting land reclaiming ranges enables effective monitoring and extraction of the HCLR range.

Key wordsmountain cutting and land formation    Sentinel imagery    multi-temporal    change monitoring    random forests
收稿日期: 2023-09-14      出版日期: 2025-02-17
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“面向生态工程驱动的甘肃黄土高原植被恢复遥感监测与成效评估”(42261069)
作者简介: 牛全福(1973-),男,博士,教授,研究方向为3S与地质灾害监测。Email: Niuqf@lut.edu.cn
引用本文:   
牛全福, 雷姣姣, 刘博, 王浩, 张瑞珍, 王刚. Sentinel-1/2影像在兰州北山削山造地范围识别中的应用[J]. 自然资源遥感, 2025, 37(1): 142-151.
NIU Quanfu, LEI Jiaojiao, LIU Bo, WANG Hao, ZHANG Ruizhen, WANG Gang. Application of Sentinel-1/2 imagery in identifying hills cutting and land reclaiming in the Beishan Mountain of Lanzhou. Remote Sensing for Natural Resources, 2025, 37(1): 142-151.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023284      或      https://www.gtzyyg.com/CN/Y2025/V37/I1/142
Fig.1  削山造地开挖区提取技术路线
特征类型 特征变量 变量名称 变量描述/公式
光谱特征 波段 B2,B3,B4,B5,B8,B8a,B11 蓝光、绿光、红光、红边、近红外、窄近红外、短波红外
指数特征 比值植被指数
归一化植被指数
归一化水体指数
归一化建筑指数
改进土壤调节植被指数
增强植被指数
裸露土壤覆盖程度指数
RVI(ratio vegetation index)
NDVI(normalized difference vegetation index)
NDWI(normalized difference water index)
NDBI(normalized difference built-up index)
MSAVI(modified soil-adujsted vegetation index)
EVI(enhancod vegetation index)
BSI(bare soil index)
B 8 / B 4
( B 8 - B 4 ) / ( B 8 + B 4
( B 3 - B 8 ) / ( B 3 + B 8
( B 11 - B 8 ) / ( B 11 + B 8
[ ( 2 B 4 + 1 ) - 2 B 4 + 1 ) 2 - 8 ( B 8 B 4 ) ] / 2
2.5 ( B 8 - B 4 ) / ( B 7 + 6 B 4 - 7.5 B 2 + 1 )
[ ( B 4 + B 11 ) - ( B 4 + B 2 ) ] / [ ( B 4 + B 11 ) + ( B 8 + B 2 ) ]
地形特征 高程
坡度
DEM
Slope
极化特征 VV极化后向散射系数
VH极化后向散射系数
σ V V
σ V H
纹理特征 二阶矩
对比度
相关性
方差
逆差距
B 8 a s m , V V a s m , V H a s m
B 8 c o n , V V c o n , V H c o n
B 8 c o r r , V V c o r r , V H c o r r
B 8 v a r , V V v a r , V H v a r
B 8 i d m , V V i d m , V H i d m
B 8 e n t , V V e n t , V H e n t
Tab.1  特征变量
Fig.2  开挖区空间分布(水源站)
Fig.3  开挖前后的SAR后向散射强度对比
方案精度 升轨 降轨 升轨+降轨组合
OA/% 77 73 85
Kappa 0.72 0.67 0.83
Tab.2  2021年3种方案提取的开挖区统计精度
监测年份 削山造地前时段/景 削山造地后时段/景
升轨 降轨 升轨 降轨
2017年 2 3 5 8
2018年 5 8 5 9
2019年 5 9 5 10
2020年 5 10 5 15
2021年 5 15 5 10
2022年 5 10 5 10
Tab.3  获取SAR影像数
Fig.4  2017—2022年兰州北山削山造地开挖区空间分布
地类 评价
指标
组合方案
光谱 光谱
+指数
光谱
+纹理
光谱
+地形
光谱
+极化
全部
特征
优化
特征
削山造地 PA 84.2 89.0 85.0 80.0 79.1 86.5 92.1
UA 71.4 84.0 80.0 75.0 76.0 83.2 92.8
建筑 PA 85.0 80.0 81.1 83.1 75.3 76.4 83.7
UA 75.7 80.4 85.6 75.2 80.0 71.3 83.2
水体 PA 90.0 84.4 83.0 85.0 82.6 83.9 90.4
UA 83.2 87.4 82.3 89.0 86.6 85.4 90.9
草地 PA 70.4 70.0 72.0 72.8 76.5 75.0 81.3
UA 68.3 67.0 88.0 67.6 82.4 75.0 77.7
森林 PA 75.0 85.0 69.6 83.0 85.1 83.1 76.1
UA 75.0 85.2 68.0 78.7 82.2 82.2 77.2
裸地 PA 72.6 87.0 69.9 78.8 71.6 79.5 82.9
UA 69.7 72.0 77.9 76.2 66.3 74.8 81.4
耕地 PA 69.9 76.6 77.7 81.4 85.1 82.02 78.3
UA 71.3 88.2 73.6 74.4 81.5 78.7 81.1
Tab.4  分类结果精度统计
Fig.5  2017—2022年兰州北山削山造地时空分布
Fig.6  2017—2022年兰州北山削山和造地面积
[1] 徐昔保, 杨桂山, 张建明. 兰州市城市土地利用优化研究[J]. 武汉大学学报(信息科学版), 2009, 34(7):878-881.
Xu X B, Yang G S, Zhang J M. Urban land use optimization in Lanzhou,China[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7):878-881.
[2] 蒲小武, 王兰民, 吴志坚, 等. 兰州丘陵沟壑区挖方黄土高边坡面临的工程地质问题及稳定性分析[J]. 地震工程学报, 2016, 38(5):787-794.
Pu X W, Wang L M, Wu Z J, et al. Engineering geological problems of loess high excavation slope in loess hilly and gully region of Lanzhou and its stability analysis[J]. China Earthquake Engineering Journal, 2016, 38(5):787-794.
[3] Niu Q, Bai J, Cheng W, et al. Mapping the dynamics of urban land creation from hilltop removing and gully filling Projects in the river-valley city of Lanzhou,China[J]. Journal of the Indian Society of Remote Sensing, 2022, 50(10):1813-1826.
[4] Li Y, Li Y, Karácsonyi D, et al. Spatio-temporal pattern and driving forces of construction land change in a poverty-stricken county of China and implications for poverty-alleviation-oriented land use policies[J]. Land Use Policy, 2020,91:104267.
[5] 白建荣. 兰州北山区域削山造地监测技术研究[R]. 甘肃省,甘肃省地图院,2018-05-29.
Bai J R. Research on Monitoring Technology of Land-cutting and Land-making in Beishan Area,Lanzhou[R]. Gansu Province,Gansu Map Institute,2018-05-29.
[6] 白建荣, 王桂钢, 杨腊梅. 兰州周边地区削山造地遥感监测及生态效应分析[J]. 测绘地理信息, 2020, 45(4):26-28.
Bai J R, Wang G G, Yang L M. Remote sensing monitoring and ecological effect assessment of land creation in Lanzhou City[J]. Journal of Geomatics, 2020, 45(4):26-28.
[7] 何永刚, 巨擘. 基于Skyline的兰州削山造地监测三维系统设计与实现[J]. 矿山测量, 2018, 46(1):44-48,108.
He Y G, Ju B. Design and implementation of land creation monitoring 3D system in Lanzhou based on Skyline Mine Surveying[J]. 2018, 46(1):44-48,108.
[8] 赵元, 王华栋. 无人机倾斜摄影在削山造地快速监测中的应用[J]. 矿山测量, 2018, 46(3):27-30.
Zhao Y, Wang H D. Application of UAV oblique photography in rapid monitoring in shaping mountain for land creation[J]. Mine Surveying, 2018, 46(3):27-30.
[9] 赵大卫, 贾永红, 白建荣, 等. 兰州北山区削山造地扬尘浓度预测方法及应用[J]. 武汉大学学报(信息科学版), 2021, 46(7):1106-1113.
Zhao D W, Jia Y H, Bai J R, et al. Prediction method and application of dust from land creation in Lanzhou northern mountain area[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7):1106-1113.
[10] 高小龙, 白建荣, 王桂钢. 基于航空遥感数据的地形变化分析[J]. 地理空间信息, 2020, 18(3):79-81,86,7.
Gao X L, Bai J R, Wang G G. Analysis of the terrain changes based on airborne remote sensing data[J]. Geospatial Information, 2020, 18(3):79-81,86,7.
[11] Pauleit S, Ennos R, Golding Y. Modeling the environmental impacts of urban land use and land cover change—a study in Merseyside,UK[J]. Landscape and Urban Planning, 2005, 71(2/3/4):295-310.
[12] Sharma J, Prasad R, Mishra V N, et al. Land use and land cover classification of multispectral Landsat8 satellite imagery using discrete wavelet transform[J]. The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2018,XLII-5:703-706.
[13] 周珂, 杨永清, 张俨娜, 等. 光学遥感影像土地利用分类方法综述[J]. 科学技术与工程, 2021, 21(32):13603-13613.
Zhou K, Yang Y Q, Zhang Y N, et al. Review of land use classification methods based on optical remote sensing images[J]. Science Technology and Engineering, 2021, 21(32):13603-13613.
[14] Borràs J, Delegido J, Pezzola A, et al. Land use classification from Sentinel-2 imagery[J]. Revista De Teledetección, 2017(48):55.
[15] Jiao L, Liu Y. Analyzing the shape characteristics of land use classes in remote sensing imagery[J]. ISPRS Annals of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2012,I-7:135-140.
[16] 张磊, 宫兆宁, 王启为, 等. Sentinel-2影像多特征优选的黄河三角洲湿地信息提取[J]. 遥感学报, 2019, 23(2):313-326.
Zhang L, Gong Z N, Wang Q W, et al. Wetland mapping of Yellow River Delta wetlands based on multi-feature optimization of Sentinel-2 images[J]. Journal of Remote Sensing, 2019, 23(2):313-326.
[17] Colesanti C, Wasowski J. Investigating landslides with space-borne synthetic aperture Radar (SAR) interferometry[J]. Engineering Geology, 2006, 88(3/4):173-199.
[18] 罗卿莉, 崔峰志, 魏钜杰, 等. SAR影像变化检测的前景特征流形排序法[J]. 测绘学报, 2022, 51(11):2365-2378.
doi: 10.11947/j.AGCS.2022.20200512
Luo Q L, Cui F Z, Wei J J, et al. Foreground feature manifold ranking method for SAR image change detection[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(11):2365-2378.
doi: 10.11947/j.AGCS.2022.20200512
[19] Huang H, Chen Y, Clinton N, et al. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine[J]. Remote Sensing of Environment, 2017,202:166-176.
[20] 罗时雨, 童玲, 陈彦. 全极化SAR图像的山地低矮植被区域土壤含水量估计[J]. 遥感学报, 2017, 21(6):907-916.
Luo S Y, Tong L, Chen Y. Soil moisture estimation for mountainous areas covered with low vegetation using fully polarimetric SAR images[J]. Journal of Remote Sensing, 2017, 21(6):907-916.
[21] 张昊, 高小红, 史飞飞, 等. 基于Sentinel-2 MSI与Sentinel-1 SAR相结合的黄土高原西部撂荒地提取——以青海民和县为例[J]. 自然资源遥感, 2022, 34(4):144-154.doi:10.6046/zrzyyg.2021385.
Zhang H, Gao X H, Shi F F, et al. Sentinel-2 MSI and Sentinel-1 SAR based information extraction of abandoned land in the western Loess Plateau:A case study of Minhe County in Qinghai[J] Remote Sensing for Natural Resources, 2022, 34(4):144-154.doi:10.6046/zrzyyg.2021385.
[22] Jung J, Yun S H. Evaluation of coherent and incoherent landslide detection methods based on synthetic aperture radar for rapid response:A case study for the 2018 Hokkaido landslides[J]. Remote Sensing, 2020, 12(2):265.
[23] Mondini A C, Guzzetti F, Reichenbach P, et al. Semi-automatic recognition and mapping of rainfall induced shallow landslides using optical satellite images[J]. Remote Sensing of Environment, 2011, 115(7):1743-1757.
[24] Handwerger A L, Jones S Y, Huang M H, et al. Rapid landslide identification using synthetic aperture radar amplitude change detection on the Google Earth Engine[J]. Natural Hazards and Earth System Sciences Discussions,2020:1-24.
[25] Van Tricht K, Gobin A, Gilliams S, et al. Synergistic use of radar Sentinel-1 and optical Sentinel-2 imagery for crop mapping:A case study for Belgium[J]. Remote Sensing, 2018, 10(10):1642.
[26] Carrasco L, O’Neil A W, Morton R D, et al. Evaluating combinations of temporally aggregated Sentinel-1,Sentinel-2 and Landsat 8 for land cover mapping with Google Earth Engine[J]. Remote Sensing, 2019, 11(3):288.
[27] 宋宏利, 雷海梅, 尚明. 基于Sentinel 2A/B时序数据的黑龙港流域主要农作物分类[J]. 江苏农业学报, 2021, 37(1):83-92.
Song H L, Lei H M, Shang M. Crop classification based on Sentinel 2A/B time series data in Heilonggang River basin[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(1):83-92.
[28] Le Toan T, Beaudoin A, Riom J, et al. Relating forest biomass to SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2):403-411.
[29] Svoboda J, Štych P, Laštovička J, et al. Random forest classification of land use,land-use change and forestry (LULUCF) using Sentinel-2 data:A case study of Czechia[J]. Remote Sensing,2022,14(5):1189.
[30] Lindsay E, Frauenfelder R, Rüther D, et al. Multi-temporal satellite image composites in google earth engine for improved landslide visibility:A case study of a glacial landscape[J]. Remote Sensing, 2022, 14(10):2301.
[31] Mondini A C, Santangelo M, Rocchetti M, et al. Sentinel-1 SAR amplitude imagery for rapid landslide detection[J]., Remote Sensing, 2019, 11(7):760.
[32] 赵怡卿, 李玫洁, 吴瑕. 包头地区极端温度天气事件的百分位阈值计算与检验[J]. 农业灾害研究, 2023, 13(3):86-88.
Zhao Y Q, Li M J, Wu X. Percentile threshold calculation and test of extreme temperature weather events in Baotou area[J]. Journal of Agricultural Catastrophology, 2023, 13(3):86-88.
[33] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
[34] 帅爽, 张志, 张天, 等. 特征优化结合随机森林算法的干旱区植被高光谱遥感分类方法[J]. 农业工程学报, 2023, 39(9):287-293.
Shuai S, Zhang Z, Zhang T, et al. Hyperspectral image classification method for dryland vegetation by combining feature optimization and random forest algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(9):287-293.
[35] 魏鑫, 任雨, 陈曦东, 等. 基于时序Sentinel-2数据水体动态变化监测——以河南省为例[J/OL]. 自然资源遥感, 2023:1-11.(2023-06-19)[2023-09-11].https://kns.cnki.net/kcms/detail/10.1759.P.20230619.1013.018.html.
Wei X, Ren Y, Chen X D, ed al. Monitoring dynamic changes of water bodies based on time-series Sentinel-2 data:A case study in Henan Province[J/OL] Remote Sensing for Natural Resources, 2023:1-11.(2023-06-19) [2023-09-11].https://kns.cnki.net/kcms/detail/10.1759.P.20230619.1013.018.html.
[36] Stehman S V. Selecting and interpreting measures of thematic classification accuracy[J]. Remote Sensing of Environment, 1997, 62(1):77-89.
[37] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383.
[38] Du W B, Ji W Q, Xu L J, et al. Deformation time series and driving-force analysis of glaciers in the eastern Tienshan Mountains using the SBAS InSAR method[J]. International Journal of Environmental Research and Public Health, 2020, 17(8):2836.
[39] Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry[C]// IEEE 1999 International Geoscience and Remote Sensing Symposium. IEEE,2000:1528-1530.
[40] Adriano B, Yokoya N, Miura H, et al. A semiautomatic pixel-object method for detecting landslides using multitemporal ALOS-2 intensity images[J]. Remote Sensing, 2020, 12(3):561.
[1] 李钰彬, 王宗明, 赵传朋, 贾明明, 任春颖, 毛德华, 于皓. 辽河口盐地碱蓬时空动态遥感监测及其识别机理研究[J]. 自然资源遥感, 2025, 37(1): 195-203.
[2] 范莹琳, 杜松, 赵岳, 邱景智, 杜晓川, 张玉峰, 丁晏, 宋思彤, 车巧慧. 基于随机森林算法的煤矸石山信息提取[J]. 自然资源遥感, 2025, 37(1): 54-61.
[3] 陈理, 张仙, 李伟, 李瑜, 陈昊旻. 基于分层次多尺度分割的缅甸达贡山镍矿矿区信息提取与动态变化监测[J]. 自然资源遥感, 2024, 36(4): 55-61.
[4] 陈宜欣, 宁晓刚, 张翰超, 兰小强, 常中兵. 遥感生态指数(RSEI)模型及应用综述[J]. 自然资源遥感, 2024, 36(3): 28-40.
[5] 刘永新, 张思源, 边鹏, 王丕军, 袁帅. 1989—2020年黄河流域巴彦淖尔段地表覆盖类型时空演变研究[J]. 自然资源遥感, 2024, 36(2): 207-217.
[6] 薛志泳, 田震, 朱建华, 赵阳. 基于Google Earth Engine的八门湾红树林年际变化监测[J]. 自然资源遥感, 2024, 36(2): 279-286.
[7] 冯倩, 张佳华, 邓帆, 吴贞江, 赵恩灵, 郑培鑫, 韩杨. 基于特征优选和时空融合算法的黄河三角洲湿地类别制图方法研究[J]. 自然资源遥感, 2024, 36(2): 39-49.
[8] 柴佳兴, 张云生, 杨振, 陈斯飏, 李海峰. 联合无人机影像生成DSM和DOM的多层次建筑物变化检测[J]. 自然资源遥感, 2024, 36(2): 80-88.
[9] 刘美艳, 聂胜, 王成, 习晓环, 程峰, 冯宝坤. 基于ICESat-2和Sentinel-2A数据的森林蓄积量反演[J]. 自然资源遥感, 2024, 36(1): 210-216.
[10] 卢献健, 张焕铃, 晏红波, 黎振宝, 郭子扬. 协同Sentinel-1/2多特征优选的甘蔗提取方法[J]. 自然资源遥感, 2024, 36(1): 86-94.
[11] 杜晓川, 娄德波, 徐林刚, 范莹琳, 张琳, 李婉悦. 基于GF-2影像和随机森林算法的花岗伟晶岩提取[J]. 自然资源遥感, 2023, 35(4): 53-60.
[12] 余绍淮, 徐乔, 余飞. 联合光学和SAR遥感影像的山区公路滑坡易发性评价方法[J]. 自然资源遥感, 2023, 35(4): 81-89.
[13] 钟骁勇, 李洪义, 郭冬艳, 谢模典, 赵婉如, 胡碧峰. 基于多源环境变量和随机森林模型的江西省耕地土壤pH值空间预测[J]. 自然资源遥感, 2023, 35(4): 178-185.
[14] 何苏玲, 贺增红, 潘继亚, 王金亮. 基于多模型的县域土地利用/土地覆盖模拟[J]. 自然资源遥感, 2023, 35(4): 201-213.
[15] 陈健, 李虎, 刘玉锋, 常竹, 韩伟杰, 刘赛赛. 基于Sentinel-2数据多特征优选的农作物遥感识别研究[J]. 自然资源遥感, 2023, 35(4): 292-300.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发