Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2010, Vol. 22 Issue (s1) : 185-190     DOI: 10.6046/gtzyyg.2010.s1.38
Technology Application |

An Analysis of Dynamic Change and Landscape Spatial Pattern of the Wetlands in Yancheng of Jiangsu Province Based on Remote Sensing Technology
ZHAO Yu-ling 1, YU Wan-xin 2, NIE Hong-feng 1
1.China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083,China;  2.Chinese University of Geosciences, Beijing 100083, China
Download: PDF(930 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

 Wetland has various ecosystems functions as well as economic and social values and hence is regarded as a mature

resource treasury and living environment for people’s existence and development. In recent years, due to economic

development and population growth, the human interference and destruction of the wetlands have become increasingly serious,

and the prevention of the degradation of wetlands has become a very important and urgent task. In this paper, the wetland

resource in Yancheng was extracted by using multi-source remote sensing data of CBERS, ETM, TM, MSS, in combination with

other non-remote sensing data, such as the terrain map. According to the information retrieval results, the authors

analyzed and forecast the change of wetland landscape by using the Markovian models, the Convertion Marix and the Dynamics

Rate. Based on data available, the authors hold that such changes in the landscape pattern is attributed to some natural

changes and human activities, such as geotectonic movement, climate, economic development and population growth, with the

human activities being the main factor responsible for landscape pattern variation.

Keywords Burnt rock      Reflectance spectral curve      Hyperspectral      Information extraction     
:     
  TP 79  
Issue Date: 13 November 2010
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHU Shan-you
HAN Zuo-zhen
ZHANG Guang-chao
Cite this article:   
ZHU Shan-you,HAN Zuo-zhen,ZHANG Guang-chao.
An Analysis of Dynamic Change and Landscape Spatial Pattern of the Wetlands in Yancheng of Jiangsu Province Based on Remote Sensing Technology[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 185-190.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2010.s1.38     OR     https://www.gtzyyg.com/EN/Y2010/V22/Is1/185

[1]国家林业局《湿地公约》履约办公室. 湿地公约履约指南[M]. 北京:中国林业出版社,2001.


[2]陆健健. 中国湿地[M]. 上海:华东师范大学出版社,1990.


[3]安树青. 湿地生态工程——湿地资源利用与保护的优化模式[M]. 北京:化学工业出版社,2001.


[4]周昕薇. 基于3S技术的北京湿地动态监测与评价方法研究[D].北京:首都师范大学,2006.


[5]刘振乾,徐新良,吕宪国. 3S技术在三角洲湿地资源研究中的应用[J]. 地理学与国土研究,1999,15(4),87-91.


[6]李杨帆,朱晓东,邹欣庆,等. 江苏盐城海岸湿地景观生态系统研究[J]. 海洋通报,2005,24(4),46-51.


[7]王加连,刘忠权. 盐城滩涂生物多样性保护及其可持续利用[J]. 生态学杂志,2005,24(9),1090-1094.


[8]Wei Ji,James Johnston. A GIS-base Decision Support System for Wet Land Permit Analysis[J]. GIS/LIS,1994:471-476.


[9]Harvey K R, Hill G J E.Vegetation Mapping of a Tropical Freshwater Swamp in the Northern Territory, Aurtralia:a


Comparison of Aerial Photography, Landsat TM and SPOT Satellite Imagery[J]. Internaional Journal of Remote


Sensing,2001,22(15):2911-2925.


[10]王艳. 若尔盖湿地遥感动态监测与景观格局分析[D]. 北京:中国地质大学(北京),2007.


[11]宋宏利. 基于GIS的遥感图像湿地信息提取及景观变化研究——以黄骅湿地为例[D]. 石家庄:河北师范大学,2006.


[12]阎秀英,蔡伟. 中巴地球资源卫星产品的推广应用与市场展望[C]∥中国资源卫星应用中心. 中巴地球资源卫星应用研究文集. 


2003:41-47.


[13]梅安新,彭望琭,秦其明,等. 遥感导论[M]. 北京:高等教育出版社,2001.


[14]刘玉安,塔西甫拉提·特依拜,沈涛,等. 基于“3S”技术的于田绿洲湿地动态变化研究[J]. 中国沙漠,2005,25(5),706-710.


[15]TurnerII B L,Dacid Skole,Steven Sanderson.Land Use and Land Cover Change:Science/Research Planning[J].Stockholm:


IGBPReortNO35,1995,125-1373.


[16]Rei R S,Kruska R L,et al.Land Use and Land Cover Dynamics in Response to Changes in Climatic,Biologicaland Socio


Political Forces:the Case of Southwest Ethiopial[J].Landscape Ecology,2000(15):339-355.


[17]阮仁宗,冯学智. 基于多时相遥感和GIS技术的湿地识别研究[J]. 遥感信息应用,2005(2):20-24.


[18]王树功,黎夏,钟凯文,等. 遥感与GIS技术在湿地定量研究中的应用趋势分析[J]. 热带地理,2005,25(3):201-205.


[19]蔡则健,吴曙亮. 江苏海岸线演变趋势遥感分析[J]. 国土资源遥感,2002(3):19-23.


[20]刘厚田. 湿地的定义和类型划分[J]. 生态学杂志,1995,14(4):73-77.


[21]李扬帆,刘青松. 湿地与湿地保护[M]. 北京:中国环境出版社,2003.


[22]周华茂,曾良修,喻歌农,等. 卫星遥感和地理信息系统在湿地资源调查中的应用[J]. 西南农业学报,2000,13(2):78-82.


[23]中国湿地[EB/OL].http://www.wetland.gov.cn.


[24]江苏年检[M].南京:江苏年鉴杂志社,2002.


[25]邬建国. 景观生态学——格局、过程、尺度与等级[M]. 北京:高等教育出版社,2000.

[1] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[2] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[3] CHEN Jie, ZHANG Lifu, ZHANG Linshan, ZHANG Hongming, TONG Qingxi. Research progress on online monitoring technologies of water quality parameters based on ultraviolet-visible spectra[J]. Remote Sensing for Natural Resources, 2021, 33(4): 1-9.
[4] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[5] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
[6] ZANG Chuankai, SHEN Fang, YANG Zhengdong. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
[7] WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3): 63-71.
[8] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[9] WEI Yingjuan, LIU Huan. Remote sensing-based mineralized alteration information extraction and prospecting prediction of the Beiya gold deposit, Yunnan Province[J]. Remote Sensing for Natural Resources, 2021, 33(3): 156-163.
[10] SHU Huiqin, FANG Junyong, LU Peng, GU Wanfa, WANG Xiao, ZHANG Xiaohong, LIU Xue, DING Lanpo. Research on fine recognition of site spatial archaeology based on multisource high-resolution data[J]. Remote Sensing for Land & Resources, 2021, 33(2): 162-171.
[11] XIAO Yan, XIN Hongbo, WANG Bin, CUI Li, JIANG Qigang. Hyperspectral estimation of black soil organic matter content based on wavelet transform and successive projections algorithm[J]. Remote Sensing for Land & Resources, 2021, 33(2): 33-39.
[12] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[13] MOU Xiaoli, LI He, HUANG Chong, LIU Qingsheng, LIU Gaohuan. Application progress of Google Earth Engine in land use and land cover remote sensing information extraction[J]. Remote Sensing for Land & Resources, 2021, 33(2): 1-10.
[14] HAN Yanling, CUI Pengxia, YANG Shuhu, LIU Yekun, WANG Jing, ZHANG Yun. Classification of hyperspectral image based on feature fusion of residual network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 11-19.
[15] XIA Yan, HUANG Liang, CHEN Pengdi. Tobacco fine extraction from UAV image based on fuzzy-superpixel segmentation algorithm[J]. Remote Sensing for Land & Resources, 2021, 33(1): 115-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech