Please wait a minute...
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (2) : 162-171     DOI: 10.6046/gtzyyg.2020293
Research on fine recognition of site spatial archaeology based on multisource high-resolution data
SHU Huiqin1,2(), FANG Junyong1(), LU Peng3, GU Wanfa4, WANG Xiao1, ZHANG Xiaohong1, LIU Xue1, DING Lanpo4
1. Areospace Information Research Institute, China Academy of Sciences, Beijing 100094, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou 450052, China
4. Zhengzhou Institute of Cultural Relics and Archaeology,Zhengzhou 450000, China
Download: PDF(8369 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

The ancient city of Pingtao, Zhengzhou City, Henan Province, was an important city in the Eastern Zhou Dynasty and has important historical value. Due to the problems of time-consuming, heavy investment and heavy workload in traditional archaeological investigations, the settlement layout and relic distribution of the old city of Pingtao are still unclear. In this study, the authors selected Corona, Google Earth historical images and aerial thermal infrared images, comparatively analyzed the tonal and texture features on images of different loads, phases and scales, and extracted the archaeological anomalous areas of the Pingtao City site and Dianjuntai site. Suspected ruins such as city walls, gates, corner platforms and rectangular building foundations were discovered, and the spatial structure of the ruins was initially reconstructed based on the identification results. The results of the study show that Corona imagery helps to identify the early appearance of the site, Google Earth historical imagery provides assistance for the detection and extraction of tiny suspected relic features, and aerial thermal infrared imagery can reveal such archeological features as indistinct burial on the ground or optical image. The research proves that the comprehensive utilization of multi-source high-score data can investigate, predict and reconstruct the distribution and spatial structure of the relics, thus providing a reference for further archaeological research and site protection.

Keywords remote sensing archaeology      site identification      aviation thermal infrared      hyperspectral      Corona      Google Earth     
ZTFLH:  TP79  
Corresponding Authors: FANG Junyong     E-mail:;
Issue Date: 21 July 2021
E-mail this article
E-mail Alert
Articles by authors
Huiqin SHU
Junyong FANG
Peng LU
Wanfa GU
Xiaohong ZHANG
Lanpo DING
Cite this article:   
Huiqin SHU,Junyong FANG,Peng LU, et al. Research on fine recognition of site spatial archaeology based on multisource high-resolution data[J]. Remote Sensing for Land & Resources, 2021, 33(2): 162-171.
URL:     OR
Fig.1  Location of the study area
成像时间 数据源 空间分
数据来源 备注
1962-04-18 Corona KH-4 3.04 1 美国地质调查局 立体像对
1963-09-25 Corona KH-4A 2.74 1 美国地质调查局
1966-06-06 Corona KH-7 0.61 1 美国地质调查局
1968-08-17 Corona KH-4B 1.82 1 美国地质调查局 立体像对
1968-11-16 Corona KH-4B 1.82 1 美国地质调查局 立体像对
2003-06-12 QuickBird02 0.64 3 Google Earth历史影像
2011-05-27 WorldView-2 0.5 3 Google Earth历史影像
2014-05-29 GF-1 0.46 3 Google Earth历史影像
2015-01-03 WorldView-2 0.55 3 Google Earth历史影像
2015-04-13 WorldView-3 0.38 3 Google Earth历史影像
2016-12-08 WorldView-2 0.52 3 Google Earth历史影像
2017-11-20 WorldView-2 0.5 3 Google Earth历史影像
2019-03-23 GF-1 0.48 3 Google Earth历史影像
2019-12-19 Pleiades 0.5 3 Google Earth历史影像
Tab.1  Multi-source high-resolution remote sensing image information
参数 数值
翼展/mm 2 500
轴距/mm 1 000
最大起飞质量/kg 5
最大任务载重/kg 3
空载悬停时间/min 40
最大爬升速度/(m·s-1) 4
最大下降速度/(m·s-1) 3
地面站控制距离/m 10 000
工作最大海拔/m 5 000
Tab.2  Main parameters of UAV
Fig.2  UAV remote sensing system
Fig.3  Sign of remote sensing interpretation of ancient road remains
Fig.4  Remote sensing image analysis of Pingtao City wall and suspected corner platform remains
Fig.5  The approximate location of the suspected gate of Pingtao City
Fig.6  Image analysis of the rectangular ruins of Pingtao City site
Fig.7  Recognition of ancient road relics from hyperspectral images
[1] 邓飚, 郭华东. 遥感考古研究综述[J]. 遥感信息, 2010(1):110-116.
[1] Deng B, Guo H D. Review of remote sensing archaeological research[J]. Remote Sensing Information, 2010(1):110-116.
[2] Noviello M, Ciminale M,de Pasquale V.Combined application of pansharpening and enhancement metho-ds to improve archaeological cropmark visibility and identification in QuickBird imagery:Two case studies from Apulia,Southern Italy[J]. Journal of Archaeological Science, 2013, 40(10):3604-3613.
doi: 10.1016/j.jas.2013.04.013 url:
[3] Masini N, Lasaponara R, Orefici G. Addressing the challenge of detecting archaeological adobe structures in Southern Peru using QuickBird imagery[J]. Journal of Cultural Heritage, 2009, 10(s1):3-9.
[4] Masini N, Lasaponara R. Investigating the spectral capability of QuickBird data to detect archaeological remains buried under vegetated and not vegetated areas[J]. Journal of Cultural Heritage, 2007, 8(1):53-60.
doi: 10.1016/j.culher.2006.06.006 url:
[5] Masini N, Rosa L. Satellite-based recognition of landscape archaeological features related to ancient hum-an transformation[J]. Journal of Geophysics and Engineering, 2006, 3(3):230-235.
doi: 10.1088/1742-2132/3/3/004 url:
[6] Garrison T G, Houston S D, Golden C, et al. Evaluating the use of IKONOS satellite imagery in lowland Maya settlement archaeology[J]. Journal of Archaeological Science, 2008, 35(10):2770-2777.
doi: 10.1016/j.jas.2008.05.003 url:
[7] Traviglia A, Cottica D. Remote sensing applications and archaeological research in the Northern Lagoon of Venice:The case of the lost settlement of Constanciacus[J]. Journal of Archaeological Science, 2011, 38(9):2040-2050.
doi: 10.1016/j.jas.2010.10.024 url:
[8] Luo L, Wang X Y, Guo H D, et al. Airborne and spaceborne remote sensing for archaeological and cult-ural heritage applications:A review of the century (1907—2017)[J]. Remote Sensing of Environment, 2019(232):508-542.
[9] Agapiou A, Alexakis D D, Sarris A, et al. Colour to greyscale pixels:Re-seeing greyscale archived aerial photographs and declassified satellite CORONA images based on image fusion techniques[J]. Archaeol-ogical Prospection, 2016, 23(4):231-241.
[10] Philip G, Donoghue D, Beck A, et al. CORONA satellite photography:An archaeological application from the Middle East[J]. Antiquity, 2002, 76(291):109-118.
doi: 10.1017/S0003598X00089869 url:
[11] Shaw J. A 'reflexive' multi-stage survey methodology for historical landscape research in Central India:Fieldwalking,local knowledge,and satellite imagery as archaeological site prospection and mapping tools in the Sanchi Survey Project[J]. Current Science, 2017, 113(10):1918-1933
doi: 10.18520/cs/v113/i10/1918-1933 url:
[12] 于丽君, 聂跃平, 杨林, 等. 新疆轮台奎玉克协海尔古城空间考古综合研究[J]. 遥感技术与应用, 2020, 35(1):255-266.
[12] Yu L J, Nie Y P, Yang L, et al. A comprehensive spatial archaeological study of the Koyuk Shahri ancient City in Xinjiang[J]. Remote Sensing Technology and Application, 2020, 35(1):255-266.
[13] Jason U. CORONA satellite photography and ancient road networks:A northern mesopotamian case study[J]. Antiquity, 2003, 77(295):102-115.
doi: 10.1017/S0003598X00061391 url:
[14] Francesc C, Marco M, Nikolaos G, et al. CORONA photographs in monsoonal semi-arid environments:Addressing archaeological surveys and historic landscape dynamics over North Gujarat,India[J]. Archaeological Prospection, 2015, 22(2):75-90.
doi: 10.1002/arp.v22.2 url:
[15] Sabine R, Andrey B, Dmitriy K. Caucasia top-down:Remote sensing data for survey in a high altitude mountain landscape[J]. Quaternary International, 2016, 402(402):46-60.
doi: 10.1016/j.quaint.2015.10.106 url:
[16] Goossens R, Wulf A D, Bourgeois J, et al. Satellite imagery and archaeology:The example of CORONA in the Altai Mountains[J]. Journal of Archaeological Science, 2006, 33(6):745-755
doi: 10.1016/j.jas.2005.10.010 url:
[17] Karim S, Xavier R.Google Earth, GIS and stone-walled structures in southern Gauteng,South Africa[J]. Journal of Archaeological Science, 2012, 39(4):1034-1042.
doi: 10.1016/j.jas.2011.11.024 url:
[18] Heather P. Google Earth shows clandestine worlds[J]. Science, 2010, 329(5995):1008-1009.
doi: 10.1126/science.329.5995.1008 pmid: 20798294
[19] Luo L, Wang X Y, Liu C S, et al. Integrated RS,GIS and GPS approaches to archaeological prospecting in the Hexi Corridor,NW China:A case study of the royal road to ancient Dunhuang[J]. Journal of Archaeological Science, 2014(50):178-190.
[20] Carrie H. A malarial-ridden swamp:Using Google Earth Pro and Corona to access the southern Balikh valley,Syria[J]. Journal of Archaeological Science, 2013, 40(4):1975-1987.
doi: 10.1016/j.jas.2012.11.017 url:
[21] Kaimaris D, Georgoula O, Patias P, et al. Comparative analysis on the archaeological content of imagery from Google Earth[J]. Journal of Cultural Heritage, 2011, 12(3):263-269.
doi: 10.1016/j.culher.2010.12.007 url:
[22] Kennedy D, Bishop M C. Google earth and the archaeology of Saudi Arabia:A case study from the Jeddah area[J]. Journal of Archaeological Science, 2011, 38(6):1284-1293.
doi: 10.1016/j.jas.2011.01.003 url:
[23] Dimitris K, Petros P, Olga G. Google Earth revisited: Case studies at the Plain of Larissa (Thessaly,Greece)[J]. International Journal of Computational Methods in Heritage Science (IJCMHS), 2017, 1(1):77-88.
[24] Kaimaris D, Georgoula O, Patias P, et al. Comparative analysis on the archaeological content of imagery from Google Earth[J]. Journal of Cultural Heritage, 2011, 12(3):263-269.
doi: 10.1016/j.culher.2010.12.007 url:
[25] Périsset M C, Tabbagh A. Interpretation of thermal prospection on bare soils[J]. Archaeometry, 1981, 23(2):169-187.
doi: 10.1111/arch.1981.23.issue-2 url:
[26] Kvamme K L. Archaeological prospecting at the Double Ditch State Historic Site,North Dakota,USA[J]. Archaeological Prospection, 2008, 15(1):62-79.
doi: 10.1002/(ISSN)1099-0763 url:
[27] Casana J, Kantner J, Wiewel A, et al. Archaeological aerial thermography:A case study at the Chaco-era Blue J community,New Mexico[J]. Journal of Archaeological Science, 2014(45):207-219.
[28] Casana J, Wiewel A, Cool A, et al. Archaeological aerial thermography in theory and practice[J]. Advances in Archaeological Practice, 2017, 5(4):1-18.
doi: 10.1017/aap.2016.7 url:
[29] Madeleine M L, Jesse C, Schurr M R, et al. Detecting prehistoric landscape features using thermal,multispectral,and historical imagery analysis at Midewin National Tallgrass Prairie,Illinois[J]. Journal of Archaeological Science:Reports, 2018(21):450-459.
[30] Syed A, William S, Jane D. Finding archaeological cropmarks:A hyperspectral approach[P]. SPIE Remote Sensing, 2007.
[31] Cerra D, Athos A, et al. An Objective Assessment of Hyperspectral Indicators for the Detection of Buried Archaeological Relics[J]. Remote Sensing, 2018, 10(4):500-525.
doi: 10.3390/rs10040500 url:
[32] Athos A, Diofantos G, et al. Observatory validation of Neolithic tells (“Magoules”) in the Thessalian plain,central Greece,using hyperspectral spectroradiometric data[J]. Journal of Archaeological Science, 2012, 39(5):1499-1512.
doi: 10.1016/j.jas.2012.01.001 url:
[33] Stephen H, Thomas E, Ian W. Prospects and problems in the use of hyperspectral imagery for archaeological remote sensing:A case study from the Faynan copper mining district,Jordan[J]. Journal of Archaeolo-gical Science, 2011, 39(2):407-420.
[34] 常维华. 荥阳文物志[M]. 郑州: 中州古籍出版社, 2011:63-64.
[34] Chang W H. ingyang cultural relics[M]. Zhengzhou: Zhongzhou Ancient Books Publishing House, 2011:63-64.
[35] 张立东. 濮阳卫城郭门探寻[J]. 华夏考古, 2019(4):57-63.
[35] Zhang L D. Exploration of the gate of Puyang Guard City[J]. Chinese Archaeology, 2019(4):57-63.
[36] 张立东, 杨子彦. 郑州商城城门探寻[J]. 江汉考古, 2015(4):79-85.
[36] Zhang L D, Yang Z Y. An exploration the gate of Zhengzhou Shang City Site[J]. Huaxia Archaeology, 2015(4):57-63.
[1] ZHENG Zongsheng, LIU Haixia, WANG Zhenhua, LU Peng, SHEN Xukun, TANG Pengfei. Improved 3D-CNN-based method for surface feature classification using hyperspectral images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 105-111.
[2] ZHANG Guojian, LIU Shengzhen, SUN Yingjun, YU Kaijie, LIU Lina. Hyperspectral anomaly detection based on the weakly supervised robust autoencoder[J]. Remote Sensing for Natural Resources, 2023, 35(2): 167-175.
[3] YU Sen, JIA Mingming, CHEN Gao, LU Yingying, LI Yi, ZHANG Bochun, LU Chunyan, LI Huiying. A study of the disturbance to mangrove forests in Dongzhaigang, Hainan based on LandTrendr[J]. Remote Sensing for Natural Resources, 2023, 35(2): 42-49.
[4] ZHU Lin, HUANG Yuling, YANG Gang, SUN Weiwei, CHEN Chao, HUANG Ke. Information extraction and spatio-temporal evolution analysis of the coastline in Hangzhou Bay based on Google Earth Engine and remote sensing technology[J]. Remote Sensing for Natural Resources, 2023, 35(2): 50-60.
[5] KONG Zhuo, YANG Haitao, ZHENG Fengjie, LI Yang, QI Ji, ZHU Qinyu, YANG Zhonglin. Research advances in atmospheric correction of hyperspectral remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 1-10.
[6] CHEN Huixin, CHEN Chao, ZHANG Zili, WANG Liyan, LIANG Jintao. A remote sensing information extraction method for intertidal zones based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(4): 60-67.
[7] LI Yi, CHENG Lina, LU Yingying, ZHANG Bochun, YU Sen, JIA Mingming. A study on the changes in coastal tidal flats in the Laizhou Bay based on MSIC and OTSU[J]. Remote Sensing for Natural Resources, 2022, 34(4): 68-75.
[8] ZHANG Pengqiang, GAO Kuiliang, LIU Bing, TAN Xiong. Classification of hyperspectral images based on deep Transformer network combined with spatial-spectral information[J]. Remote Sensing for Natural Resources, 2022, 34(3): 27-32.
[9] SUN Xiao, XU Linlin, WANG Xiaoyang, TIAN Ye, WANG Wei, ZHANG Zhongyue. Mineral identification from hyperspectral images based on the optimized K-P-Means unmixing method[J]. Remote Sensing for Natural Resources, 2022, 34(3): 43-49.
[10] YAN Hongbo, WEI Wanqiu, LU Xianjian, YANG Zhigao, LI Zhenbao. A review of remote sensing inversion methods for estimating soil water content based on hyperspectral characteristics[J]. Remote Sensing for Natural Resources, 2022, 34(2): 1-9.
[11] ZHU Qi, GUO Huadong, ZHANG Lu, LIANG Dong, LIU Xuting, WAN Xiangxing. Classification of tropical natural forests in Hainan Island based on multi-temporal Landsat8 remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(2): 215-223.
[12] LUO Hongjian, MING Dongping, XU Lu. Time series calculation of remote sensing ecological index based on GEE[J]. Remote Sensing for Natural Resources, 2022, 34(2): 271-277.
[13] SUN Xiao, PENG Junhuan, ZHAO Feng, WANG Xiaoyang, LYU Jie, ZHANG Dengfeng. Principal component selection method for hyperspectral remote sensing images based on spatial statistics[J]. Remote Sensing for Natural Resources, 2022, 34(2): 37-46.
[14] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[15] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech