Please wait a minute...
 
Remote Sensing for Natural Resources    2021, Vol. 33 Issue (4) : 1-9     DOI: 10.6046/zrzyyg.2020409
|
Research progress on online monitoring technologies of water quality parameters based on ultraviolet-visible spectra
CHEN Jie1,2(), ZHANG Lifu2, ZHANG Linshan2, ZHANG Hongming2, TONG Qingxi2
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
2. State Key Laboratory of Remote Sensing Science, Aero Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
Download: PDF(789 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The spectral analysis method can be used to qualitatively and quantitatively research water quality parameters using the characteristics that the molecules or ions of substances in the solution can absorb the full spectrum of ultraviolet-visible light. It enjoys the advantages such as high detection speed, low cost, in-situ measurement, no secondary pollution, and the simultaneous online monitoring of multiple water quality parameters. Based on the statement of the theoretical basis of water quality spectrum analysis, this paper systematically analyzes the principles and characteristics of various measurement methods. By comparing domestic and foreign full-spectrum water quality online monitoring devices, this paper points out the key technological difficulties in the establishment of high-precision online inversion models of water quality parameters and further proposes the development trends of multi-parameter online monitoring systems of water quality using the spectral analysis method. Therefore, this paper will provide a reference for the research on water environment monitoring technologies and the development of instruments for water quality parameter detection based on the theories of spectral analysis.

Keywords hyperspectral      spectral analysis      water quality parameters      online monitoring     
ZTFLH:  TP79  
Issue Date: 23 December 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jie CHEN
Lifu ZHANG
Linshan ZHANG
Hongming ZHANG
Qingxi TONG
Cite this article:   
Jie CHEN,Lifu ZHANG,Linshan ZHANG, et al. Research progress on online monitoring technologies of water quality parameters based on ultraviolet-visible spectra[J]. Remote Sensing for Natural Resources, 2021, 33(4): 1-9.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2020409     OR     https://www.gtzyyg.com/EN/Y2021/V33/I4/1
技术指标设备名称 波段范围/nm 监测参数 探测原理 生产商
Spectro∶lyser 190~750 TSS,浊度,NO3-N,COD,BOD,TOC,DOC,UV254,色度,BTX,O3,HS-,AOC 100 mm固定光程、透射、双光路法 奥地利S∶CAN
Bluebox-ISA 200~708 TSS,浊度,NO3-N,NO2-N,COD,BOD,TOC,DOC,UV254,色度,BTX,O3,HS-,PO4,WQI 0.5~20 mm可调节光程、透射法、单光路 德国 GO-
SYSTEMELEKTRONIK
NiCaVis 200~720 NO3-N,NO2-N,COD,BOD,TOC,DOC,TSS 透射法、双光束 德国WTW
SYS-WQS 200~720 COD,TOC,BOD,NO3-N,臭氧,色度,浊度,悬浮物等 可变光程、透射 中国SixNet
YZ UViSP 200~730 COD,TOC,溶DOC,BOD,硝酸盐氮,浊度及悬浮物,UV254等 透射,双光束 中国与正
Tab.1  Comparison of technical indicators of water online quality spectrum monitoring equipment in domestic and abroad
[1] 张风彩, 焦二虎. 浅析水质监测新技术的应用[J]. 治淮, 2015(1):62-63.
[1] Zhang F C, Jiao E H. Analysis on the application of new water quality monitoring technology[J]. Harnessing the Huaihe River, 2015(1):62-63.
[2] 张伟天. 松花江流域水污染防治方略[D]. 哈尔滨:哈尔滨工业大学, 2006.
[2] Zhang W T. Water pollution prevention and control strategy of Songhua River catchment[D]. Harbin:Harbin Institute of Technology, 2006.
[3] 张旭. 水体污染及监测分析方法研究[J]. 技术与市场, 2012,19(6):257.
[3] Zhang X. Research on water pollution and monitoring analysis method[J]. Technology and Market, 2012,19(6):257.
[4] 张祥琼, 刘波, 张凌云. 电化学分析法在水质分析与监测中的应用综述[J]. 城镇供水, 2018(1):31-35.
[4] Zhang X Q, Liu B, Zhang L Y. Summary of application of electrochemical analysis method in water quality analysis and monitoring[J]. Journal of China Urban Water Association, 2018(1):31-35.
[5] 范玉国, 李婉琳, 杨升洪, 等. 生物传感器技术在水质监测中的应用[J]. 环境与发展, 2019,31(12):76-79.
[5] Fan Y G, Li W L, Yang S H, et al. Application of biosensor technology in water quality monitoring[J]. Environment and Development, 2019,31(12):76-79.
[6] 唐平. 基于紫外-可见光谱法的水质检测数据处理方法研究[D]. 重庆:重庆理工大学, 2018.
[6] Tang P. Research on data processing method of water quality detection based on UV-Vis Spectroscopy[D]. Chongqing:Chongqing University of Technology, 2018.
[7] 向俊, 尚云涛. 离子色谱法在水质分析中的应用研究进展[J]. 环境与发展, 2014,26(6):95-97.
[7] Xiang J, Shang Y T. Research progress of application of Ion Chromatography to water quality analysis[J]. Environment and Development, 2014,26(6):95-97.
[8] 严冬, 曾祥程, 宋娟娥, 等. 电感耦合等离子体质谱测定水体中可溶性65种元素[J]. 环境化学, 2014,33(8):1418-1421.
[8] Yan D, Zeng X C, Song J E. Determination of soluble 65 elements in water by inductively coupled plasma mass spectrometry[J]. Environmental Chemistry, 2014,33(8):1418-1421.
[9] 刘阳春, 郑泽根. 荧光分析法在水体污染监测中的应用[J]. 重庆建筑大学学报, 2003(5):57-60.
[9] Liu Y C, Zheng Z G. Application of fluorescence analysis in mensuration of water pollution[J]. Journal of Civil and Environmental Engineering, 2003(5):57-60.
[10] 周昆鹏, 白旭芳, 毕卫红. 荧光光谱法检测水质COD时温度、浊度、pH的影响分析[J]. 光谱学与光谱分析, 2019,39(4):1097-1102.
[10] Zhou K P, Bai X F, Bi W H, Turbidity and pH impact analysis of water COD detected by fluorescence spectroscopy[J]Spectroscopy and Spectral Analysis, 2019,39(4):1097-1102.
[11] 李恢宏. 近红外光谱的水质总磷检测系统[D]. 武汉:中南民族大学, 2016.
[11] Li H H. Detection system of the total phosphorus in water based on near infrared spectroscopy[D]. Wuhan:South-Central University for Nationalities, 2016.
[12] 何金成, 杨祥龙, 王立人, 等. 近红外光谱法测定废水化学需氧量[J]. 浙江大学学报(工学版), 2007(5):752-755,783.
[12] He J C, Yang X L, Wang L R, et al. Determination of chemical oxygen demand in wastewater by near-infrared spectroscopy[J]. Journal of Zhejiang University(Engineering Science), 2007(5):752-755,783.
[13] 王燕, 李和平, 陈娟, 等. 拉曼光谱在水质分析中的应用进展[J]. 地球与环境, 2014,42(2):260-264.
[13] Wang Y, Li H P, Chen J, et al. Progressin the application of Raman spectroscopy to water quality analysis[J]. Earth and Environment, 2014,42(2):260-264.
[14] 濮文虹, 刘光虹, 喻俊芳. 水质分析化学[M]. 武汉: 华中科技大学出版社, 2004.
[14] Pu W H, Liu G H, Yu J F. Water quality analytical chemistry[M]. Wuhan: Huazhong Univesity of Science and Technology Press, 2004.
[15] 谢欢, 童小华. 水质监测与评价中的遥感应用[J]. 遥感信息, 2006(2):67-70,75.
[15] Xie H, Tong X H. Application of remote sensing techniques in monitoring and assessing water quality[J]. Remote Sensing Information, 2006(2):67-70,75.
[16] 姚伟. 基于遥感的水体悬浮物含量变化研究[D]. 杭州:浙江大学, 2006.
[16] Yao W. Study on suspended sediment concentration change by remote sensing[D]. Hangzhou:Zhejiang University, 2006.
[17] 闻建光. 太湖水体叶绿素a遥感监测模型研究[D]. 长春:吉林大学, 2005.
[17] Wen J G. Study on remote sensing monitoring model of water Chorollphy-a in Taihu[D]. Changchun:Jilin University, 2005.
[18] 段洪涛, 张柏, 宋开山, 等. 查干湖叶绿素a浓度高光谱定量模型研究[J]. 环境科学, 2006,27(3):503-507.
[18] Duan H T, Zhang B, Song K S, et al. Hyperspectral remote sensing of Chorollphy-a in the Chagan Lake,China[J]. Environmental Science, 2006,27(3):503-507.
[19] 朱小花. 鄱阳湖黄色物质光学特性的初步研究[J]. 华夏地理, 2016,(9):161-162.
[19] Zhu X H. Preliminary Study on the optical properties of the yellow matter in Poyang Lake[J]. National Geographic, 2016,(9):161-162.
[20] 孙德勇, 李云梅, 王桥, 等. 利用高光谱数据估算太湖水体CDOM浓度的神经网络模型[J]. 武汉大学学报(信息科学版), 2009,34(7):851-855.
[20] Sun D Y, Li Y M, Wang Q, et al. Remote sensing retrieval of CDOM concentration in Lake Taihu with Hyper-spectral sata and neural network model[J]. Geomatics and Information Science of Wuhan University, 2009,34(7):851-855.
[21] Ogura N O M, Marumo R. Ultraviolet absorbance of sea waters of Tokyo Bay,Sagami Bay and off-shore waters in the Western Pacific[J]. Journal of the Oceanographical Society of Japan, 1965,21(6):237-244.
doi: 10.5928/kaiyou1942.21.237 url: https://www.jstage.jst.go.jp/article/kaiyou1942/21/6/21_6_237/_article/-char/ja/
[22] Caruso S C, Bramer H C, Hoak R D. The analysis of trace constituents in water by spectroscopic methods[M]. Chicago:Springer US, 1968.
[23] Edzwald J K. Coagulation in drinking water treatment:Particles,Organics and Coagulants[J]. Waterence & Technology, 1993,27(11):21-35.
[24] Abulkibash A M, Fraihat S M. Sequential injection spectrophotometric determination of Cyanide[J]. Journal of Flow Injection Analysis, 2007,24(1):17.
[25] Yuan D, Fu D, Wang R, et al. Rapid determination of chromium(VI) in electroplating waste water by use of a spectrophotometric flow injection system[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2008,71(1):276-279.
[26] Rajesh N, Manikandan S. Spectrophotometric determination of lead after preconcentration of its diphenylthiocarbazone complex on an Amberlite XAD-1180 column[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2008,70(4):754-757.
[27] Li J, Tao T, Li X B, et al. A spectrophotometric method for determination of chemical oxygen demand using home-made reagents[J]. Desalination, 2009,239(1-3):139-145.
doi: 10.1016/j.desal.2008.03.014 url: https://linkinghub.elsevier.com/retrieve/pii/S0011916409000290
[28] Faber B G P E P. A compact portable flow analysis system for the rapid determination of total phosphorus in estuarine and marine waters[J]. Analytica Chimica Acta, 2010,674(2):117-22.
doi: 10.1016/j.aca.2010.06.030 url: https://linkinghub.elsevier.com/retrieve/pii/S0003267010008238
[29] Eskandari H, Shariati M R. Dodecylbenzene sulfonate-coated magnetite nanoparticles as a new adsorbent for solid phase extraction-spectrophotometric determination of ultra trace amounts of ammonium in water samples[J]. Analytica Chimica Acta, 2011,704(1-2):146-153.
doi: 10.1016/j.aca.2011.07.005 url: https://linkinghub.elsevier.com/retrieve/pii/S0003267011009238
[30] 杨孝容. 双波长等吸收分光光度法测定COD[J]. 武汉理工大学学报, 2010,32(2):177-180.
[30] Yang X R. Determination of COD by doal-wavelength equivalent absorbance spectrophotometry[J]. Journal of Wuhan University of Technology, 2010,32(2):177-180.
[31] 梁康甫, 杨慧中. 双波长浊度补偿法测定水中总磷[J]. 中国给水排水, 2016,32(16):115-118.
[31] Liang K P, Yang H Z. Determination of total Phosphorus in water by dual wavelength turbidity compensation method[J]. China Water & Wastewater, 2016,32(16):115-118.
[32] 赖永忠, 王亮根. 两种双波长法用于减小浊度对废水中六价铬测定结果的影响[J]. 化学工程师, 2012,26(10):27-30,35.
[32] Lai Y Z, Wang L G. Influence on test results of reduce the turbidity of wastewater of Cr (Ⅵ) by two kinds of dual wavel[J]. Chemical Engineer, 2012,26(10):27-30,35.
[33] 江虹, 庞向东, 洪歆, 等. 多波长褪色光度法测定鲜柠檬中的柠檬酸[J]. 食品与发酵工业, 2017,43(4):228-231.
[33] Jiang H, Pang X D, Hong X, et al. Determination of citric acid in the fresh lemon by multi-wavelength color fading spectrophotometry[J]. Food and Fermentation Industries, 2017,43(4):228-231.
[34] 乔元彪, 杜子平. 比光谱-导数-紫外分光光度法同时测定水中苯酚和苯胺[J]. 分析化学, 1999(5):618.
[34] Qiao Y B, Du Z P. Simultaneous determination of phenol and aniline in water by ratio spectrum-derivative-ultraviolet spectrophotometry[J]. Chinese Journal of Analytical Chemistry, 1999(5):618.
[35] 徐本明, 毕同香. 多波长吸收度比值差法的研究与应用[J]. 药学学报, 1989(5):360-365.
pmid: 2609971
[35] Xu B M, Bi T X. Study on multiwavelength absorbance ratio difference spectrophotometry and its application[J]. Acta Pharmaceutica Sinica, 1989(5):360-365.
pmid: 2609971
[36] 张素华, 郭淼. 电镀废液中铁、铜、铬、镍离子的光度法快速分析[J]. 材料保护, 2015,48(12):66-67,9.
[36] Zhang S H, Guo M. Rapid photometric analysis of valuable metal Ions of Iron,Copper,Chromium,Nickel in electroplating Water[J]. Materials Protection, 2015,48(12):66-67,9.
[37] Vanloot P, Branger C, Margaillan A, et al. On-line solid-phase extraction and multisyringe flow injection analysis of Al(III) and Fe(III) in drinking water[J]. Analytical & Bioanalytical Chemistry, 2007,389(5):1595-1602.
[38] Belén E, Ramírez C, María P, et al. Determination of bioavailable soluble arsenic and phosphates in mine tailings by spectrophotometric Sequential Injection Analysis[J]. Talanta, 2009,78(3):1069-1076.
doi: 10.1016/j.talanta.2009.01.024 pmid: 19269474
[39] Ayala A, Leal L O, Ferrer L, et al. Multiparametric automated system for sulfate,nitrite and nitrate monitoring in drinking water and wastewater based on sequential injection analysis[J]. Microchemical Journal, 2012(100):55-60.
[40] 吕杨华. 基于分光光度法的多参数在线水质监测仪的研究与设计[D]. 杭州:浙江大学, 2012.
[40] Lü Y H. Research and design of an online multi-parameter water quality analyzer based on spectrophotometric method[D]. Hangzhou:Zhejiang University, 2012.
[41] 卢欣春, 袁颖华, 熊欣, 等. 微型分光光度计在多参数水质在线分析仪中的应用[J]. 光学与光电技术, 2019,17(5):36-41.
[41] Lu X C, Yuan Y H, Xiong X, et al. Application of a micro spectrophotometer in On-line multi-parameter water quality monitoring system[J]. Optics & Optoelectronic Technology, 2019,17(5):36-41.
[42] Broeke J V D, Langergraber G, Weingartner A. On-line and in situ UV/Vis spectroscopy for multi-parameter measurements:A brief review[J]. Spectroscopy Europe, 2006,18(4):3-4.
[43] Chevakidagarn P. BOD5 estimation by using UV absorption and COD for rapid industrial effluent monitoring[J]. Environmental Monitoring & Assessment, 2007,131(1-3):445-450.
[44] 穆秀圣. UV全光谱法在线水质测量仪的技术研究与实现[D]. 成都:电子科技大学, 2009.
[44] Mu X S. Technical research and realization of online water quality measuring instrument by UV full spectrum method[D]. Chengdu:University of Electronic Science and Technology of China, 2009.
[45] 武尚智. 基于紫外-可见光光谱的水质监测预警方法与设备研发[D]. 杭州:浙江大学, 2013.
[45] Wu S Z. Method and device development of water quality monitoring and early warning based on UV-Vis spectra[D]. Hangzhou:Zhejiang University, 2013.
[46] 赵友全, 顾建, 王慧敏. 基于脉冲氙灯的UV水质监测技术研究[C]//全国第20届光谱仪器与分析监测学术研讨会论文集. 2013:53-59.
[46] Zhao Y Q, Gu J, Wang H M. Research on UV water quality monitoring technology based on pulsed xenon lamp[C]//Proceedings of the 20th National Symposium on Spectroscopic Instruments and Analysis and Monitoring. 2013:53-59.
[47] 刘娟. 基于无线传感网络的分布式紫外-可见光谱水质COD监测系统设计与实现[D]. 重庆:重庆大学, 2016.
[47] Liu J. Design and implementation of the destributed water quality COD monitoring system based on wireless sensor networks and UV-Vis spectroscopy[D]. Chongqing:Chongqing University, 2016.
[48] 陈松柏. 基于微型光谱仪的多参数水质检测仪应用软件设计与实验[D]. 重庆:重庆大学, 2012.
[48] Chen S B. Software design and experiment of Multi-parameter water quality monitoring system based on Micro-spectrometer[D]. Chongqing:Chongqing University, 2012.
[49] 魏康林. 基于微型光谱仪的多参数水质检测仪关键技术研究[D]. 重庆:重庆大学, 2012.
[49] Wei K L. Study on key technologies of multi-parameter water quality detecting instrument based on micro spectrometer[D]. Chongqing:Chongqing University, 2012.
[50] 于志强. 多参数水质检测仪测控系统优化设计与实验[D]. 重庆:重庆大学, 2015.
[50] Yu Z Q. Measurement and control system optimal design and experiment of multi-parometer water quality monitor[D]. Chongqing:Chongqing University, 2015.
[51] 周苏怡. 基于微型光谱仪的多参数水质检测仪自检系统设计与实验[D]. 重庆:重庆大学, 2016.
[51] Zhou S Y. Design and experiment of self-check system for multi-parameter water quality detector based on micro spectrometer[D]. Chongqing:Chongqing University, 2016.
[52] 田鹏. 多参数水质监测仪测控系统设计与实现[D]. 重庆:重庆大学, 2012.
[52] Tian P. Design and implementation of a control and measurement system for multi-parameter water quality monitor[D]. Chongqing:Chongqing University, 2012.
[53] Wei K L, Wen Z Y, Guo S B. The design and experiment of multi-parameter water quality monitoring microsystem based on MOEMS microspectrometer[J]. Spectroscopy & Spectral Analysis, 2012,32(7):2009-2014.
[54] Sarraguca M C, Paul A, Alves M M, et al. Quantitative monitoring of an activated sludge reactor using on-line UV-visible and near-infrared spectroscopy[J]. Analytical and Bioanalytical Chemistry, 2009,395(4):1159-1166.
doi: 10.1007/s00216-009-3042-z url: http://link.springer.com/10.1007/s00216-009-3042-z
[55] Thomas O, Theraulaz F, Domeizel M, et al. UV spectral deconvolution:A valuable tool for waste water quality determination[J]. Environmental Technology Letters, 1993,14(12):1187-1192.
[56] Dias A M A, Moita I, Páscoa R, et al. Activated sludge process monitoring through in-situ NIR spectral analysis[J]. Water Science & Technology, 2008,57(10):1643-1650.
[57] 武晓莉, 李艳君, 吴铁军. 用于紫外光谱水质分析的Boosting-偏最小二乘法[J]. 分析化学, 2006,34(8):1091-1095.
[57] Wu X L, Li Y J, Wu T J. A Boosting-partial least squares method for ultraviolet spectroscopic analysis of water quality[J]. Chinese Journal of Analytical Chemistry, 2006,34(8):1091-1095.
[58] Langergraber G, Fleischmann N, Hofstadter F. A multivariate calibration procedure for UV/VIS spectrometric quantification of organic matter and nitrate in wastewater[J]. Water Science and Technology:A Journal of the International Association on Water Pollution Research, 2003,47(2):63-71.
[59] Fogelman S, Zhao H, Blumenstein M. A rapid analytical method for predicting the oxygen demand of wastewater[J]. Analytical and Bioanalytical Chemistry, 2006,386(6):1773-1779.
doi: 10.1007/s00216-006-0817-3 url: http://link.springer.com/10.1007/s00216-006-0817-3
[60] Singh K P, Basant N, Gupta S. Support vector machines in water quality management[J]. Analytica Chimica Acta, 2011,703(2):152-162.
doi: 10.1016/j.aca.2011.07.027 url: https://linkinghub.elsevier.com/retrieve/pii/S0003267011009688
[1] ZHENG Zongsheng, LIU Haixia, WANG Zhenhua, LU Peng, SHEN Xukun, TANG Pengfei. Improved 3D-CNN-based method for surface feature classification using hyperspectral images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 105-111.
[2] ZHANG Guojian, LIU Shengzhen, SUN Yingjun, YU Kaijie, LIU Lina. Hyperspectral anomaly detection based on the weakly supervised robust autoencoder[J]. Remote Sensing for Natural Resources, 2023, 35(2): 167-175.
[3] KONG Zhuo, YANG Haitao, ZHENG Fengjie, LI Yang, QI Ji, ZHU Qinyu, YANG Zhonglin. Research advances in atmospheric correction of hyperspectral remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 1-10.
[4] ZHANG Pengqiang, GAO Kuiliang, LIU Bing, TAN Xiong. Classification of hyperspectral images based on deep Transformer network combined with spatial-spectral information[J]. Remote Sensing for Natural Resources, 2022, 34(3): 27-32.
[5] SUN Xiao, XU Linlin, WANG Xiaoyang, TIAN Ye, WANG Wei, ZHANG Zhongyue. Mineral identification from hyperspectral images based on the optimized K-P-Means unmixing method[J]. Remote Sensing for Natural Resources, 2022, 34(3): 43-49.
[6] YAN Hongbo, WEI Wanqiu, LU Xianjian, YANG Zhigao, LI Zhenbao. A review of remote sensing inversion methods for estimating soil water content based on hyperspectral characteristics[J]. Remote Sensing for Natural Resources, 2022, 34(2): 1-9.
[7] SUN Xiao, PENG Junhuan, ZHAO Feng, WANG Xiaoyang, LYU Jie, ZHANG Dengfeng. Principal component selection method for hyperspectral remote sensing images based on spatial statistics[J]. Remote Sensing for Natural Resources, 2022, 34(2): 37-46.
[8] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[9] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[10] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[11] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[12] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
[13] ZANG Chuankai, SHEN Fang, YANG Zhengdong. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
[14] WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3): 63-71.
[15] HAN Yanling, CUI Pengxia, YANG Shuhu, LIU Yekun, WANG Jing, ZHANG Yun. Classification of hyperspectral image based on feature fusion of residual network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 11-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech