Please wait a minute...
 
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (1) : 115-122     DOI: 10.6046/gtzyyg.2020078
|
Tobacco fine extraction from UAV image based on fuzzy-superpixel segmentation algorithm
XIA Yan1(), HUANG Liang1,2(), CHEN Pengdi1
1. College of Land and Resources Engineering, Kunming University of Technology, Kunming 650093, China
2. Application Engineering Research Center of Spatial Information Mapping Technology in Plateau Mountainous Area of Yunnan Province, Kummimg 650093, China
Download: PDF(6548 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The successful extraction of tobacco single plant automation is of great significance to the realization of tobacco agricultural information, but there are still great difficulties in tobacco fine extraction. Therefore, a tobacco extraction method based on Fuzzy superpixels (FS) algorithm is proposed. Firstly, vegetation coverage area in UAV image is obtained by green space extraction method; secondly, super-pixel segmentation of image is carried out by using FS algorithm, and the mean value, brightness, shape index, aspect ratio, custom vegetation index and other features of super-pixel are counted; finally, the number of tobacco plants is extracted and counted by calculating the feature threshold of super-pixel. Three UAV images were selected as the experimental data. The experimental results show that the overall accuracy of this method is 84.28%, 89.05% and 82.97% respectively. This method can be used for automatic extraction of tobacco plant and can provide effective reference for later calculation of tobacco yield.

Keywords tobacco      UAV image      fuzzy-superpixel segmentation      information extraction     
ZTFLH:  TP79  
Corresponding Authors: HUANG Liang     E-mail: 799537530@qq.com;kmhuangliang@163.com
Issue Date: 18 March 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yan XIA
Liang HUANG
Pengdi CHEN
Cite this article:   
Yan XIA,Liang HUANG,Pengdi CHEN. Tobacco fine extraction from UAV image based on fuzzy-superpixel segmentation algorithm[J]. Remote Sensing for Land & Resources, 2021, 33(1): 115-122.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020078     OR     https://www.gtzyyg.com/EN/Y2021/V33/I1/115
Fig.1  Original images
Fig.2  Flow chart of proposed method
Fig.3-1  Feature distribution graph
Fig.3-2  Feature distribution graph
Fig.4  Vegetation extraction result images
Fig.5  FS fuzzy superpixel algorithm segmentation results
Fig.6  Traditional segmentation algorithm segmentation results
Fig.7  Traditional segmentation algorithm results of Tobacco fine extraction
Fig.8  Traditional algorithm results of Tobacco fine extraction
方法 数据 实际株数 提取株数 总体精度/% 错检率/% 漏检率/%
FS 算法 数据1 626 650 84.28 0.03 20.91
数据2 438 490 89.05 0.20 11.51
数据3 513 552 82.97 0.36 13.89
传统算法 数据1 54.05 1.00 39.84
数据2 59.20 0.42 56.24
数据3 63.70 0.61 37.78
Tab.1  Tobacco extraction accuracy evaluation
[1] 李玉宝, 王鹏, 王彬, 等. 现代烟草农业发展存在的问题及对策[J]. 现代农业科技, 2019(9):244-246.
[1] Li Y B, Wang P, Wang B, et al. Problems in the development of modern tobacco agriculture and countermeasures[J]. Modern Agricultural Science and Technology, 2019(9):244-246.
[2] 陈明, 张连巧, 周正林, 等. 烟草种植技术与田间管理措施[J]. 河南农业, 2018(35):17-18.
[2] Chen M, Zhang L Q, Zhou Z L, et al. Tobacco planting technology and field management measures[J]. Henan Agriculture, 2018(35):17-18.
[3] Han L. Recognition of the part of growth of flue-cured tobacco leaves based on support vector machine[C]// World Congress on Intelligent Control & Automation.IEEE, 2008: 3624-3627.
[4] 吴孟泉, 崔青春, 张丽, 等. 复杂山区烟草种植遥感监测及信息提取方法研究[J]. 遥感技术与应用, 2008,23(3):305-309.
[4] Wu M Q, Cui Q C, Zhang L, et al. Tobacco field monitoring and classification method study in mountainous area[J]. Remote Sensing Technology and Application, 2008,23(3):305-309.
[5] Guru D S, Mallikarjuna P B, Manjunath S. Segmentation and classification of tobacco seedling diseases[C]// Proceedings of the Fourth Annual ACM Bangalore Conference.ACM, 2011: 1-5.
[6] 李天坤. 基于面向对象分类方法的烟草种植面积提取研究[D]. 成都:四川农业大学, 2013.
[6] Li T K. Extraction of tobacco planting area based on object-oriented classification method[D]. Chengdu:Sichuan Agricultural University, 2013.
[7] 董梅, 苏建东, 刘广玉, 等. 面向对象的无人机遥感影像烟草种植面提取和监测[J]. 测绘科学, 2014,39(9):87-90.
[7] Dong M, Su J D, Liu G Y, et al. Extraction and monitoring of tobacco planting surface based on object-oriented UAV Remote Sensing Image[J]. Surveying and Mapping Science, 2014,39(9):87-90.
[8] 陈金, 刘品超, 黄国强, 等. 基于无人机遥感影像的烟草种植面积信息提取[J]. 湖南农业科学, 2018(1):96-99,103.
[8] Chen J, Liu P C, Huang G Q, et al. Information extraction of tobacco planting area based on unmanned aerial vehicle remote sensing images[J]. Hunan Agricultural Science, 2018(1):96-99,103.
[9] 胡九超. 基于高分辨率合成孔径雷达(SAR)的高原山区烟草识别方法研究[D]. 贵阳:贵州师范大学, 2015.
[9] Hu J C. Plateau mountainous tobacco identification based on high resolution synthetic aperture radar(SAR)[D]. Guiyang:Guizhou Normal University, 2015
[10] 刘明芹, 李新举, 杨永花, 等. 基于资源三号卫星遥感影像的山区套种烟草面积估测[J]. 安徽农业科学, 2016(3):291-293.
[10] Liu M Q, Li X J, Yang Y H, et al. Estimation of the intercropped tobacco area in mountainous area based on ZY-3 remote sensing images[J]. Journal of Anhui Agricultural Sciences, 2016(3):291-293.
[11] 王政, 陈燕丽, 莫建飞, 等. HJ-1影像中基于光谱特征的烤烟识别方法[J]. 烟草科技, 2014(1):72-76.
[11] Wang Z, Chen Y L, Mo J F, et al. Recognition of flue-cured tobacco crop based on spectral characteristics extracted from HJ-1 remote sensing images[J]. Tobacco Science and Technology, 2014(1):72-76.
[12] 付静. 基于无人机图像的山区烟株数量统计方法与试验[D]. 贵阳:贵州大学, 2019.
[12] Fu J. Method and experiment of tobacco number statistics in mountainous area based on UAV image[D]. Guiyang:Guizhou University, 2019.
[13] 栗旭升, 刘玉锋, 陈冬花, 等. 结合图像特征的支持向量机高分一号云检测[J]. 国土资源遥感, 2020,32(3):55-62.doi: 10.6046/gtzyyg.2020.03.08.
[13] Li X S, Liu Y F, Chen D H, et al. Cloud detection based on support vector machine with image features for GF-1 data[J]. Remote Sensing of Land and Resources, 2020,32(3):55-62.doi: 10.6046/gtzyyg.2020.03.08.
[14] 娄佩卿, 陈晓雨, 王疏桐, 等. 基于无人机影像的喀斯特农耕区地物识别——以桂林市为例[J]. 国土资源遥感, 2020,32(1):216-223.doi: 10.6046/gtzyyg.2020.01.29.
[14] Lou P Q, Chen X Y, Wang S T, et al. Object recognition of karst farming area based on UAV image:A case study of Guilin[J]. Remote Sensing for Land and Resources, 2020,32(1):216-223.doi: 10.6046/gtzyyg.2020.01.29.
[15] 袁小翠, 黄志开, 马永力, 等. Otsu阈值分割法特点及其应用分析[J]. 南昌工程学院学报, 2019,38(1):85-90,97.
[15] Yan X C, Huang Z K, Ma Y L, et al. Analysis of characteristics and application of Otsu threshold method[J]. Journal of Nanchang Institute of Technology, 2019,38(1):85-90,97.
[16] 包丞啸, 姜威, 王玉潇. 基于大津法分割和局部最大梯度的自动聚焦算法[J]. 光学技术, 2019,45(6):756-761.
[16] Bao C X, Jiang W, Wang Y X. Automatic focusing algorithm based on Otsu segmentation and local maximum gradient[J]. Optical Technique, 2019,45(6):756-761.
[17] 蔡红玥, 姚国清. 基于分水岭算法的高分遥感图像道路提取优化方法[J]. 国土资源遥感, 2013,25(3):25-29.doi: 10.6046/gtzyyg.2013.03.05.
[17] Cai H Y, Yao G Q. Optimized method for road extraction from high resolution remote sensing image based on watershed algorithm[J]. Remote Sensing for Land and Resources, 2013,25(3):25-29.doi: 10.6046/gtzyyg.2013.03.05.
[18] 谢相建, 赵俊三, 陈学辉, 等. 基于集对分析的遥感图像K-均值聚类算法[J]. 国土资源遥感, 2012,24(4):82-87.doi: 10.6046/gtzyyg.2012.04.14.
[18] Xie X J, Zhao J S, Chen X H, et al. SPA-based K-means clustering algorithm for remote sensing image[J]. Remote Sensing for Land and Resources, 2012,24(4):82-87.doi: 10.6046/gtzyyg.2012.04.14.
[19] 刘长齐, 邵堃, 霍星, 等. 基于加权质量评价函数的K-means图像分割算法[J]. 计算机科学, 2019,46(z1):158-160,187.
[19] Liu C Q, Shao K, Huo X, et al. K-means image segmentation algorithm based on weighted quality evaluation function[J]. Computer Science, 2019,46(z1):158-160,187.
[20] 黄亮, 姚丙秀, 陈朋弟, 等. 高分辨率遥感影像超像素的模糊聚类分割法[J]. 测绘学报, 2020,49(5):589-597.
[20] Huang L, Yao B X, Chen P D, et al. Superpixel segmentation method of high-resolution remote sensing image based on fuzzy clustering[J]. Acta Geodaetica et Cartographica Sinica, 2020,49(5):589-597.
[21] Guo Y, Jiao L, Wang S, et al. Fuzzy-superpixels for polarimetric SAR images classification[J]. IEEE Transactions on Fuzzy Systems, 2018: 2814591.
[22] 陈美龙, 戴声奎. 基于GLCM算法的图像纹理特征分析[J]. 通信技术, 2012,45(2):108-111.
[22] Chen M L, Dai S K. Analysis on image texture based on gray-level co-occurrence matrix[J]. Communications Technology, 2012,45(2):108-111.
[1] HU Feng, LI Xue, ZUO Jin, SONG Shanhai, TANG Hongxiang, GU Xiaoping. Remote sensing identification and spatial distribution of dam areas with an area over 33.33 hm2 in Guizhou Province, China[J]. Remote Sensing for Natural Resources, 2023, 35(2): 287-294.
[2] LIANG Xiya, WANG Juanle, LI Pengfei, DAVAADORJ Davaasuren. GF-1 images-based information extraction of natural roads in arid and semi-arid regions of the Mongolian Plateau: A case study of Gurvantes Soum, Mongolia[J]. Remote Sensing for Natural Resources, 2023, 35(2): 122-131.
[3] ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
[4] ZHANG Yu, MING Dongping, ZHAO Wenyi, XU Lu, ZHAO Zhi, LIU Ran. The extraction and analysis of Luding earthquake-induced landslide based on high-resolution optical satellite images[J]. Remote Sensing for Natural Resources, 2023, 35(1): 161-170.
[5] WANG Chunxia, ZHANG Jun, LI Yixu, PHOUMILAY. The construction and verification of a water index in the complex environment based on GF-2 images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 50-58.
[6] ZHANG Shu, ZHOU Zhongfa, WANG Lingyu, CHEN Quan, LUO Jiancheng, ZHAO Xin. Inversion of moisture in surface soil of farmland in karst mountainous areas using multi-temporal SAR images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 154-163.
[7] ZHA Dongping, CAI Haisheng, ZHANG Xueling, HE Qinggang. Extraction of paddy fields using multi-temporal Sentinel-1 images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 184-195.
[8] HUANG Pei, PU Junwei, ZHAO Qiaoqiao, LI Zhongjie, SONG Haokun, ZHAO Xiaoqing. Research progress and development trend of remote sensing information extraction methods of vegetation[J]. Remote Sensing for Natural Resources, 2022, 34(2): 10-19.
[9] WEI Yingjuan, LIU Huan. Remote sensing-based mineralized alteration information extraction and prospecting prediction of the Beiya gold deposit, Yunnan Province[J]. Remote Sensing for Natural Resources, 2021, 33(3): 156-163.
[10] MOU Xiaoli, LI He, HUANG Chong, LIU Qingsheng, LIU Gaohuan. Application progress of Google Earth Engine in land use and land cover remote sensing information extraction[J]. Remote Sensing for Land & Resources, 2021, 33(2): 1-10.
[11] WANG Wei, WANG Xinsheng, YAO Chan, JIN Tian, WU Jiayu, SU Wei. Estimation of wheat planting density using UAV image[J]. Remote Sensing for Land & Resources, 2020, 32(4): 111-119.
[12] WANG Lin, XIE Hongbo, WEN Guangchao, YANG Yunhang. A study on water information extraction method of cyanobacteria lake based on Landsat8[J]. Remote Sensing for Land & Resources, 2020, 32(4): 130-136.
[13] CHEN Pengdi, HUANG Liang, XIA Yan, YU Xiaona, GAO Xiaxia. Detection and recognition of road traffic signs in UAV images based on Mask R-CNN[J]. Remote Sensing for Land & Resources, 2020, 32(4): 61-67.
[14] Wu XUE, Ling ZHAO, Ying YU. Robust bundle adjustment for UAV images[J]. Remote Sensing for Land & Resources, 2020, 32(2): 40-45.
[15] Peiqing LOU, Xiaoyu CHEN, Shutong WANG, Bolin FU, Yongyi HUANG, Tingyuan TANG, Ming LING. Object recognition of karst farming area based on UAV image: A case study of Guilin[J]. Remote Sensing for Land & Resources, 2020, 32(1): 216-223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech