Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2011, Vol. 23 Issue (3) : 67-70     DOI: 10.6046/gtzyyg.2011.03.12
Technology and Methodology |
The Application of Rapidly Produced Orthophoto to Aero Geophysical Survey
CAO Hui1, GUO Da-hai2, WANG Jian-chao2, DUAN Yan-song1
1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430072, China;
2. China Aero Geophysical Survey & Remote Sensing Center for Land and Resources, Beijing 100083, China
Download: PDF(1826 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

This paper discusses the rapid production of orthophoto in the situation of flight pattern of aero geophysical exploration. The Thiessen polygon method is used to build sampling area and automatically generate orthophoto of the measured area, with no need to carry out manual edge processing. Considering the characteristics of inmagnanimous images with large quantities of data, the authors propose a method characterized by demonstration, roam, and zoom of magnanimous image based on pyramid memory scheduling strategy of piecemeal and graduation.

Keywords Relief effects      Passive remote sensing      Mountainous areas      Soil moisture     
: 

TP 75

 
Issue Date: 07 September 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Xin-xin
ZHANG Li-xin
JIANG Ling-mei
Cite this article:   
LI Xin-xin,ZHANG Li-xin,JIANG Ling-mei. The Application of Rapidly Produced Orthophoto to Aero Geophysical Survey[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(3): 67-70.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2011.03.12     OR     https://www.gtzyyg.com/EN/Y2011/V23/I3/67


[1] 张祖勋.数字摄影测量研究30年
[M].武汉:武汉大学出版社,2007.

[2] 张祖勋,张剑清.数字摄影测量学
[M].武汉:武汉测绘科技大学出版社,1996.

[3] 张剑清,潘励,王树根.摄影测量学
[M].武汉:武汉测绘科技大学出版社,2003.

[4] 段延松.基于网格的正射影像整体制作方法
[D].武汉:武汉大学,2009.

[5] 邬建伟,马洪超,李奇.顾及语义的机载LiDAR点云格网化方法
[J].测绘科学技术学报,2008(2):87-89.

[6] 李英成,文沃根,王伟.快速获取地面三维数据的LiDAR技术系统
[J].测绘科学,2002(4):35-38.

[1] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[2] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[3] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[4] SONG Chengyun, HU Guangcheng, WANG Yanli, TANG Chao. Downscaling FY-3B soil moisture based on apparent thermal inertia and temperature vegetation index[J]. Remote Sensing for Land & Resources, 2021, 33(2): 20-26.
[5] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[6] WANG Jiaxin, SA Chula, MAO Kebiao, MENG Fanhao, LUO Min, WANG Mulan. Temporal and spatial variation of soil moisture in the Mongolian Plateau and its response to climate change[J]. Remote Sensing for Land & Resources, 2021, 33(1): 231-239.
[7] Lili FENG, Liming JIANG, Lin LIU, Yafei SUN. Karayaylak glacier changes in the Kongur Mountain of eastern Pamir between 1973 and 2016 based on active and passive remote sensing technologies[J]. Remote Sensing for Land & Resources, 2020, 32(2): 162-169.
[8] Kai WU, Hong SHU, Lei NIE, Zhenhang JIAO. Error analysis of soil moisture based on Triple Collocation method[J]. Remote Sensing for Land & Resources, 2018, 30(3): 68-75.
[9] Jun LI, Heng DONG, Xiang WANG, Lin YOU. Reconstructing missing data in soil moisture content derived from remote sensing based on optimum interpolation[J]. Remote Sensing for Land & Resources, 2018, 30(2): 45-52.
[10] Wen ZHANG, Yan REN, Xiaolin MA, Yijie HU. Estimation of soil moisture with drought indices in Huaihe River Basin of East China[J]. Remote Sensing for Land & Resources, 2018, 30(2): 73-79.
[11] ZHAO Feifei, BAO Nisha, WU Lixin, SUN Rui. Retrieving land surface temperature and soil moisture from HJ-1B data: A case study of Yimin open-cast coal mine region in Hulunbeier grassland[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 1-9.
[12] LI Wei, CHEN Xiuwan, PENG Xuefeng, XIAO Han. GNSS-R technique for soil moisture estimation: Framework and software implementation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 213-220.
[13] LI Li, WANG Di, PAN Caixia, NIU Huanna. Active microwave scattering models used in soil moisture retrieval[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 1-9.
[14] HU Danjuan, JIANG Jinbao, CHEN Xuhui, LI Jing. Comparison of bared soil moisture inversion models based on improved BP neural network[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 72-77.
[15] CHEN Mengjie, WU Hong, LIU Chao, ZHOU Minyue, LU Dingge, GUO Wei. Remote sensing inversion of dissolution rate of limestone bedrock surface based on ecological parameters in Karst areas[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 71-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech