Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (1) : 72-77     DOI: 10.6046/gtzyyg.2016.01.11
Technology and Methodology |
Comparison of bared soil moisture inversion models based on improved BP neural network
HU Danjuan1, JIANG Jinbao1, CHEN Xuhui1, LI Jing2
1. College of Geoscience and Surveying Enginneering, China University of Mining and Technology, Beijing 100083, China;
2. College of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing 100875, China
Download: PDF(10192 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Soil moisture is very important for the global water cycle in that the fast obtaining of large area's soil moisture content becomes very significant. Due to the advantages of microwave remote sensing, this technique can be applied to the inversion of soil moisture. In this paper, the authors built the BP neural network based on Matlab and, through improving the neural network's weights, threshold and the network structure, optimized the BP neural network. According to the measured data of the study area, IEM model, Oh model and Shi model were used to train the neural network so as to build soil moisture retrieval model, and the measured soil moisture content was used to test it. The result shows that the improved BP neural network algorithm obviously improves the inversion results, and Shi model is better than the other two kinds of model in training the network, with its absolute error being 2.47 and relative error being 7.78%.

Keywords Tibetan Plateau      passive microwave remote sensing      Mann-Kendall test      terrain factor     
:  TP79  
Issue Date: 27 November 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
BAI Shuying
WU Qi
SHI Jianqiao
GU Haimin
Cite this article:   
BAI Shuying,WU Qi,SHI Jianqiao, et al. Comparison of bared soil moisture inversion models based on improved BP neural network[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 72-77.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2016.01.11     OR     https://www.gtzyyg.com/EN/Y2016/V28/I1/72

[1] 舒宁.微波遥感原理[M].武汉:武汉大学出版社,2003. Shu N.Microwave Remote Sensing Principle[M].Wuhan:Wuhan University Press,2003.

[2] 李森.基于IEM的多波段、多极化SAR土壤水分反演算法研究[D].北京:中国农业科学院,2007. Li S.Soil Moisture Inversion Model Research of Multi-Band and Multi-Polarization SAR Based on IEM[D].Beijing:Chinese Academy of Agrieultural Sciences,2007.

[3] Oh Y,Sarabandi K,Ulaby F T.Semi-empirical model of the ensemble-averaged differential Mueller matrix for microwave backscattering from bare soil surfaces[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(6):1348-1355.

[4] Shi J C,Wang J,Hsu A Y,et al.Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data[J].IEEE Transactions on Geoseience and Remote Sensing,1997,35(5):1254-1266.

[5] 田芳明,周志胜,黄操军,等.BP神经网络在土壤水分预测中的应用[J].电子测试,2009(10):14-17. Tian M F,Zhou Z S,Huang C J,et al.Application of BP artificial neural network on prediction of soil water content[J].Electronic Test,2009(10):14-17.

[6] 黄飞.基于AMSR-E和BP神经网络的川中丘陵区土壤水分反演[D].四川农业大学,2012:1-76. Huang F.Soil Moisture Retrieval Using AMSR-E Data by BP Neural Network for Sichuan Middle Hilly Area[D].Sichuan Agricultural University,2012:1-76.

[7] 余凡,赵英时,李海涛.基于遗传BP神经网络的主被动遥感协同反演土壤水分[J].红外与毫米波学报,2012,31(3):283-288. Yu F,Zhao Y S,Li H T.Soil moisture retrieval based on GA-BP neural networks algorithm[J].Journal of Infrared and Millimeter Waves,2012,31(3):283-288.

[8] 林洁,陈效民,张勇,等.基于BP神经网络的太湖典型农田土壤水分动态模拟[J].南京农业大学学报,2012,35(4):140-144. Lin J,Chen X M,Zhang Y,et al.Simulation of soil moisture dynamics based on the BP neural network in the typical farmland of Tai Lake region[J].Journal of Nanjing Agricultural University,2012,35(4):140-144.

[9] 蔡满军,程晓燕,乔刚.一种改进BP网络学习算法[J].计算机仿真,2009,26(7):172-174. Cai M J,Cheng X Y,Qiao G.An improved learning algorithm for BP network[J].The Computer Simulation,2009,26(7):172-174.

[10] 陈思.BP神经网络学习率参数改进方法[J].长春师范学院学报:自然科学版,2010,29(1):26-28. Chen S.Learning rate parameter improve methods for BP neutral network[J].Journal of Changchun Normal University:Natural Science,2010,29(1):26-28.

[11] 高红.BP神经网络学习率的优化方法[J].长春师范学院学报:自然科学版,2010,29(2):29-31. Gao H.Optimal methods of learning rate for BP neutral network[J].Journal of Changchun Normal University:Natural Science,2010,29(2):29-31.

[12] 李翱翔,陈健.BP神经网络参数改进方法综述[J].电子科技,2007(2):79-82. Li A X,Chen J.Summarize of parameter improve methods for BP neural network[J].Electronic Science and Technology,2007(2):79-82.

[13] Hecht-Nielson R.Theory of the backpropagation neural network[C]//Proceedings of the International Joint Conference on Neural Networks.Washington,DC,USA:IEEE,1989:593-605.

[14] Fung A K,Li Z,Chen K S.Backscattering from a randomly rough dielectric surface[J].IEEE Transactions on Geoscience and Remote Sensing,1992,30(2):356-369.

[15] Pan H,Wang X Y,Chen Q,et al.Application of BP neural network based on genetic algorithm[J].Computer Application,2005,25(12):2777-2779.

[16] Barre H M J,Duesmann B,Kerr Y H.SMOS:The mission and the system[J].IEEE Transactions on Geoscience and Remote Sensing,2008,46(3):587-593.

[17] 赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003:136-154. Zhao Y S.Analysis Principle and Method of Remote Sensing Applications[M].Beijing:Science Press,2003:136-154.

[18] Kerr Y H,Waldteufel P,Wigneron J P,et al.The SMOS mission:New tool for monitoring key elements of the global water cycle[J].Proceedings of the IEEE,2010,98(5):666-687.

[19] Kerr Y H,Waldteufel P,Wigneron J P,et al.Soil moisture retrieval from space:The Soil Moisture and Ocean Salinity(SMOS) mission[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(8):1729-1735.

[20] 张玲,蒋金豹,崔希民,等.利用ANFIS方法反演裸土区土壤水分含量[J].国土资源遥感,2013,25(2):63-68.doi:10.6046/gtzyyg.2013.02.12. Zhang L,Jiang J B,Cui X M,et al.ANFIS method to soil moisture inversion in bare region[J].Remote Sensing for Land and Resources,2013,25(2):63-68.doi:10.6046/gtzyyg.2013.02.12.

[21] 余凡,赵英时.ASAR和TM数据协同反演植被覆盖地表土壤水分的新方法[J].中国科学:地球科学,2011,41(4):532-540. Yu F,Zhao Y S.A new semi-empirical model for soil moisture content retrieval by ASAR and TM data in vegetation-covered areas[J].Science China Earth Sciences,2011,54(12):1955-1964.

[22] Bacour C,Baret F,Béal D,et al.Neural network estimation of LAI,fAPAR,fCover,and LAI×Cab,from top of canopy MERIS reflectance data:Principles and validation[J].Remote Sensing of Environment,2006,105(4):313-325.

[23] 高婷婷.基于IEM的裸露随机地表土壤水分反演研究[D].乌鲁木齐:新疆大学,2010. Gao T T.Study on Soil Moisture Inversion of Bare Random Surface based on IEM Model[D].Urumqi:Xinjiang University,2010.

[24] Merzouki A,Bannari A,Teillet P M,et al.Statistical properties of soil moisture images derived from Radarsat-1 SAR data[J].International Journal of Remote Sensing,2011,32(19):5443-5460.

[25] 李芹.青藏高原地区主被动微波遥感联合反演土壤水分的研究[D].北京:首都师范大学,2011. Li Q.Soil Moisture Inversion Research of Qinghai-Tibet Plateau by Passive and Aetive Microwave Remote Sensing[D].Beijing:The Capital Normal University,2011.

[1] MIN Wenbin, PEN Jun, Li Shiying. The evaluation of FY-3C snow products in the Tibetan Plateau[J]. Remote Sensing for Land & Resources, 2021, 33(1): 145-151.
[2] Liqiang TONG, Lixin PEI, Jienan TU, Zhaocheng GUO, Jiangkuan YU, Jinghui FAN, Dandan LI. A preliminary study of definition and classification of ice avalanche in the Tibetan Plateau region[J]. Remote Sensing for Land & Resources, 2020, 32(2): 11-18.
[3] Junnan XIONG, Wei LI, Zhiqi LIU, Weiming CHENG, Chunkun FAN, Jin LI. Research on downscaling of TRMM data in the Tibetan Plateau based on GWR model[J]. Remote Sensing for Land & Resources, 2019, 31(4): 88-95.
[4] Binren XU, Yuanyuan WEI. Spatial statistics of TRMM precipitation in the Tibetan Plateau using random forest algorithm[J]. Remote Sensing for Land & Resources, 2018, 30(3): 181-188.
[5] Gang LIU, Yunpeng YAN, Jianyu LIU. Research on relationship between lakes and tectonic background in western Tibetan Plateau using remote sensing[J]. Remote Sensing for Land & Resources, 2018, 30(2): 154-161.
[6] WU Ying, QIAN Bo, WANG Zhenhui. Effect of radio-frequency interference on the land surface parameters retrieval from passive microwave remote sensing data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 176-181.
[7] CHU Duo, DA Wa, LABA Zhuoma, XU Weixin, ZHANG Juan. An analysis of spatial-temporal distribution features of snow cover over the Tibetan Plateau based on MODIS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 117-124.
[8] LI Xiaomin, ZHANG Kun, LI Dongling, LI Delin, LI Zongren, ZHANG Xing. Remote sensing technology delineation method and its application to permafrost of Zhada area in the Tibetan Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 57-64.
[9] LU Shanlong, XIAO Gaohuai, JIA Li, ZHANG Wei, LUO Haijing. Extraction of the spatial-temporal lake water surface dataset in the Tibetan Plateau over the past 10 years[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 181-187.
[10] BAI Shuying, WU Qi, SHI Jianqiao, GU Haimin. Relationship between the spatial and temporal distribution of snow depth and the terrain over the Tibetan Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 171-178.
[11] FU Tianju, XU Yuping, AN Tianlin, QIAO Zhanming. Model description and method for procedural extraction of terrain factors[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 62-67.
[12] SUN Zhiwen, YU Pengshan, XIA Lang, WU Shengli, JIANG Lingmei, GUO Lei. Progress in study of snow parameter inversion by passive microwave remote sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 9-15.
[13] ZHOU Fangcheng, SONG Xiaoning, LI Zhaoliang. Progress of land surface temperature retrieval based on passive microwave remote sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 1-7.
[14] CHU Duo, DEJI Yangzong, JI Qiumei, TANG Hong. Aboveground biomass estimate methods for typical grassland types in the Tibetan Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 43-50.
[15] GAO Mingxing, LIU Shaofeng. Pleistocene paleosurface reconstruction and Holocen erosion quantity calculation for Guide—Gonghe—Tongde basin complex, Qinghai[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(1): 99-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech