Please wait a minute...
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (1) : 231-239     DOI: 10.6046/gtzyyg.2020122
Temporal and spatial variation of soil moisture in the Mongolian Plateau and its response to climate change
WANG Jiaxin1,3(), SA Chula1,3(), MAO Kebiao2, MENG Fanhao1,3, LUO Min1,3, WANG Mulan1,3
1. School of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China
2. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
3. Key Laboratory of Remote Sensing and Geographic Information System, Inner Mongolia Autonomous Region, Hohhot 010022, China
Download: PDF(4445 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

As an important water resource, soil water has a significant impact on the distribution and growth of vegetation by its temporal and spatial distribution and dynamic changes. The Mongolian Plateau is a typical arid-semi-arid climate zone, and it is also a major component of the temperate grasslands of the Eurasian continent. Changes in soil water content caused by climate change will undoubtedly have a direct impact on the health and stability of the grassland ecosystem. Clarifying the soil moisture of the Mongolian Plateau as well as the temporal and spatial characteristics and their response to climate change helps provide scientific support for the formulation of ecological protection related policies. Based on GLDAS-Noah soil moisture data, the authors used linear regression analysis, correlation analysis, and Mann-Kendall (MK) test methods to analyze the temporal and spatial patterns, changing trends, and mutation characteristics of soil moisture at different depths from 1982 to 2018. Combined with CRU temperature and precipitation data, the authors explored the response of soil moisture to changes in meteorological factors. The results are as follows: ① The annual average soil moisture of the Mongolian Plateau is generally in a spatial distribution pattern of “high in the northeast and low in the southwest”, and there are obvious high-value areas, transitional zones and low-value areas. ② In the past 37 years, the soil moisture of 0~10 cm (SM1) in the Mongolian Plateau has shown an insignificant upward trend, with a rate of change of 0.002 m 3/m3/10 a. The results of MK showed that a sudden change occurred around 2012; soil moisture of 10~40 cm (SM2), the downward trend was more significant, the rate of change was -0.005 m3/m3/10 a, and its sudden change occurred around 1996. ③ The correlation analysis based on the pixel scale shows that the soil moisture in different seasons has a significant positive correlation with precipitation on the whole, and has a significant negative correlation with temperature.

Keywords Mongolian Plateau      soil moisture      climate change      GLDAS     
ZTFLH:  TP79  
Corresponding Authors: SA Chula     E-mail:;
Issue Date: 18 March 2021
E-mail this article
E-mail Alert
Articles by authors
Jiaxin WANG
Chula SA
Kebiao MAO
Fanhao MENG
Mulan WANG
Cite this article:   
Jiaxin WANG,Chula SA,Kebiao MAO, et al. Temporal and spatial variation of soil moisture in the Mongolian Plateau and its response to climate change[J]. Remote Sensing for Land & Resources, 2021, 33(1): 231-239.
URL:     OR
Fig.1  Mongolian Plateau elevation and land cover types map
Fig.2  Accuracy verification of GLDAS soil moisture data and soil moisture data at measured sites
Fig.3  Inter-annual changes in soil moisture in the Mongolian Plateau from 1982 to 2018
Fig.4  Significance test of annual mean soil moisture variation trend in the Mongolian plateau from 1982 to 2018
Fig.5  Spatial distribution and interannual variation of average soil moisture in Mongolia’s original high during 1982—2018
Fig.6  Anomalies of the original high annual average temperature and precipitation in Mongolia
相关性 分布范围
显著负相关 -0.8~-0.5 1.1 1.5
低度负相关 -0.5~-0.3 1.1 18.1 0.07 20.8
负弱相关 -0.3~0 0.4 0.2 0.2 31.2 65.1 0.7 8.3 58.8
正弱相关 0~0.3 13.1 6.5 9.1 51.2 15.5 8.7 27.6 18.7
低度正相关 0.3~0.5 28.7 18.6 28.2 13.9 0.2 20.3 35.1 0.1
显著正相关 0.5~0.8 57.6 60.0 61.6 2.6 60.5 28.7
高度正相关 0.8~1 0.2 14.7 0.9 9.9 0.02
Tab.1  Area ratio of correlation coefficient between soil moisture and precipitation in different seasons
Fig.7  Correlation between 0~10 cm soil moisture and precipitation (P) and temperature (T) in different seasons of Mongolian Plateau from 1982 to 2018
相关性 分布范围
高度负相关 -1~-0.8 0.3 0.1
显著负相关 -0.8~-0.5 0.1 30.0 0.2 1.8 29.1
低度负相关 -0.5~-0.3 2.3 32.3 21.5 13.0 29.6 1.0 0.8
负弱相关 -0.3~0 33.1 29.6 55.6 64.7 45.3 23.3 67.2 15.6
正弱相关 0~0.3 54.3 7.0 42.5 13.1 29.2 12.6 30.1 78.3
低度正相关 0.3~0.5 10.2 0.8 1.9 0.5 9.0 4.0 1.7 5.3
显著正相关 0.5~0.8 0.1 1.7 1.3
Tab.2  Area ratio of correlation coefficient between soil moisture and temperature in different seasons
Fig.8  The spatial distribution of the lag time of the response of different layers of soil moisture to precipitation and temperature
[1] 郭维栋, 马柱国, 姚永红. 近50年中国北方土壤湿度的区域演变特征[J]. 地理学报, 2003(s1):83-90.
[1] Guo W D, Ma Z G, Yao Y H. Regional evolution characteristics of soil moisture in northern China in the past 50 years[J]. Acta Geographica Sinica, 2003(s1):83-90.
[2] Hendersonsellers A, Yang Z L, Dickinson R E. The project for intercomparison of land-surface parameterization schemes[J]. Bulletin of the American Meteorological Society, 1995,74(4):489-503.
[3] Seneviratne S I, Corti T, Edouard L, et al. Investigating soil moisture-climate interactions in a changing climate:A review[J]. Earth-Science Reviews, 2010,99(3):125-161.
doi: 10.1016/j.earscirev.2010.02.004 url:
[4] 包刚, 包玉海, 覃志豪, 等. 近10年蒙古高原植被覆盖变化及其对气候的季节响应[J]. 地理科学, 2013,33(5):613-621.
[4] Bao G, Bao Y H, Qin Z H, et al. Vegetation cover change and its seasonal response to climate in the Mongolian plateau in recent 10 years[J]. Geographical Science, 2013,33(5):613-621.
[5] 胡云锋, 巴图娜存, 毕力格吉夫, 等. 乌兰巴托—锡林浩特样带草地植被特征与水热因子的关系[J]. 生态学报, 2015,35(10):3258-3266.
doi: 10.5846/stxb201308092051 url:
[5] Hu Y F, Batunacun, Biligejifu, et al. Relationship between grassland vegetation characteristics and hydrothermal factors in Ulaanbaatar-Xilinhot transect[J]. Acta Ecologica Sinica, 2015,35(10):3258-3266.
[6] 王晓婷, 郭维栋, 钟中, 等. 中国东部土壤温度、湿度变化的长期趋势及其与气候背景的联系[J]. 地球科学进展, 2009,24(2):181-191.
[6] Wang X T, Guo W D, Zhong Z, et al. Long-term trends of soil temperature and humidity changes in eastern China and their relationship with climate background[J]. Advance in Earth Science, 2009,24(2):181-191.
[7] 邓元红, 王世杰, 白晓永, 等. 西南地区土壤湿度与气候之间的互馈效应[J]. 生态学报, 2018,38(24):8688-8699.
doi: 10.5846/stxb201807301613 url:
[7] Deng Y H, Wang S J, Bai X Y, et al. Mutual feedback effects between soil moisture and climate in Southwest China[J]. Acta Ecologica Sinica, 2018,38(24):8688-8699.
[8] Bi H Y, Ma J W, Zheng W J, et al. Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau[J]. Journal of Geophysical Research Atmospheres, 2016,121(6):2658-2678.
doi: 10.1002/2015JD024131 url:
[9] 王美林, 姜群鸥, 邵雅琪, 等. 基于TVDI的玛曲土壤湿度时空变化及其影响因素[J]. 中国水土保持科学, 2019,17(4):141-152.
[9] Wang M L, Jiang Q O, Shao Y Q, et al. Temporal and spatial changes of soil moisture in Maqu based on TVDI and their influencing factors[J]. Science of Soil and Water Conservation, 2019,17(4):141-152.
[10] 范科科, 张强, 史培军, 等. 基于卫星遥感和再分析数据的青藏高原土壤湿度数据评估[J]. 地理学报, 2018,73(9):1778-1791.
doi: 10.11821/dlxb201809013 url:
[10] Fan K K, Zhang Q, Shi P J, et al. Evaluation of soil moisture data on the Qinghai-Tibet Plateau based on satellite remote sensing and reanalysis data[J]. Acta Geographica Sinica, 2018,73(9):1778-1791.
doi: 10.11821/dlxb201809013 url:
[11] 张翀, 雷田旺, 宋佃星. 黄土高原植被覆盖与土壤湿度的时滞关联及时空特征分析[J]. 生态学报, 2018,38(6):2128-2138.
doi: 10.5846/stxb201703050361 url:
[11] Zhang C, Lei T W, Song D X. Time-dependent and spatial-temporal characteristics of vegetation cover and soil moisture on the Loess Plateau[J]. Acta Ecologica Sinica, 2018,38(6):2128-2138.
[12] 程善俊, 管晓丹, 黄建平, 等. 利用GLDAS资料分析黄土高原半干旱区土壤湿度对气候变化的响应[J]. 干旱气象, 2013,31(4):641-649.
[12] Cheng S j, Guan X D, H J P, et al. Using GLDAS data to analyze the response of soil moisture to climate change in the semi-arid region of the Loess Plateau[J]. Journal of Arid Meteorology, 2013,31(4):641-649.
[13] 魏宝成, 玉山, 贾旭, 等. 基于AMSR-2蒙古高原土壤湿度反演及对气象因子响应分析[J]. 中国生态农业学报, 2016,24(6):837-845.
[13] Wei B C, Yu S, Jia X, et al. Soil moisture retrieval and response to meteorological factors in the Mongolian Plateau based on AMSR-2[J]. Chinese Journal of Eco-Agriculture, 2016,24(6):837-845.
[14] 师春香, 谢正辉, 钱辉, 等. 基于卫星遥感资料的中国区域土壤湿度EnKF数据同化[J]. 中国科学:地球科学, 2011,41(3):375-385.
[14] Shi C X, Xie Z H, Qian H, et al. Assimilation of EnKF data of regional soil moisture in China based on satellite remote sensing data[J]. Science in China:Earth Sciences, 2011,41(3):375-385.
[15] 刘丽伟, 魏栋, 王小巍, 等. 多种土壤湿度资料在中国地区的对比分析[J]. 干旱气象, 2019,37(1):40-47.
[15] Liu L W, Wei D, Wang X W, et al. Comparative analysis of various soil moisture data in China[J]. Arid Meteorology, 2019,37(1):40-47.
[16] 秦福莹. 蒙古高原植被时空格局对气候变化的响应研究[D]. 呼和浩特:内蒙古大学, 2019.
[16] Qin F Y. Study on the response of the temporal and spatial pattern of the vegetation on the Mongolian Plateau to climate change[D]. Hohhot:Inner Mongolia University, 2019.
[17] Rodell M, Houser P R, Jambor U, et al. The Global Land Data Assimilation System[J]. Bulletin of the American Meteorological Society, 2004,85(3):381-394.
doi: 10.1175/BAMS-85-3-381 url:
[18] 魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 2007: 58-60.
[18] Wei F Y. Statistical diagnosis and prediction technology of modern climate[M]. Beijing: Meteorological Press, 2007: 58-60.
[19] 索玉霞, 王正兴, 刘闯, 于伯华. 中亚地区1982年至2002年植被指数与温度和降水的相关性分析[J]. 资源科学, 2009,31(8):1422-1429.
[19] Suo Y X, Wang Z X, Liu C, et al. Analysis of the correlation between vegetation index and temperature and precipitation in Central Asia from 1982 to 2002[J]. Resources Science, 2009,31(8):1422-1429.
[20] 宋海清, 李云鹏, 张静茹, 等. 内蒙古地区多种土壤湿度资料的初步评估[J]. 干旱区资源与环境, 2016,30(8):139-144.
[20] Song H Q, Li Y P, Zhang J R, et al. Preliminary evaluation of various soil moisture data in Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2016,30(8):139-144.
[21] 丹丹. 蒙古高原近35年气候变化[D]. 呼和浩特:内蒙古师范大学, 2014.
[21] Dan D. Climate change on the Mongolian Plateau in the past 35 years[D]. Hohhot:Inner Mongolia Normal University, 2014.
[22] 廖小荷, 何清, 金莉莉, 等. 塔克拉玛干沙漠腹地冬季积雪下垫面地表反照率及土壤温湿度变化特征[J]. 中国沙漠, 2018,38(2):393-400.
[22] Liao X H, He Q, Jin L L, et al. Characteristics of surface albedo and soil temperature and humidity changes in the winter snow cover of the Taklimakan Desert hinterland[J]. China Desert, 2018,38(2):393-400.
[23] 那音太, 秦福莹, 贾根锁, 等. 近54a蒙古高原降水变化趋势及区域分异特征[J]. 干旱区地理, 2019,42(6):1253-1261.
[23] Na Y T, Qin F Y, Jia G S, et al. Variation trend and regional differentiation of precipitation in the Mongolian Plateau in recent 54 years[J]. Arid Land Geography, 2019,42(6):1253-1261.
[24] Jin L Q, Zhang J Q, Wang R Y, et al. Analysis for spatio-temporal variation characteristics of droughts in different climatic regions of the Mongolian Plateau based on SPEI[J]. Sustainability, 2019,11(20):5767.
doi: 10.3390/su11205767 url:
[25] Bao G, Qin Z H, Bao Y H, et al. NDVI-based long-term vegetation dynamics and its response to climatic change in the Mongolian Plateau[J]. Remote Sensing, 2014,6(9):8337-8358.
doi: 10.3390/rs6098337 url:
[1] GUO Yi, GAN Fuping, YAN Bokun, BAI Juan, XING Naichen, LIU Qi. Spatio-temporal distribution and influencing factors of soil moisture content in Henan Province during 1948—2021[J]. Remote Sensing for Natural Resources, 2023, 35(3): 241-252.
[2] LIANG Xiya, WANG Juanle, LI Pengfei, DAVAADORJ Davaasuren. GF-1 images-based information extraction of natural roads in arid and semi-arid regions of the Mongolian Plateau: A case study of Gurvantes Soum, Mongolia[J]. Remote Sensing for Natural Resources, 2023, 35(2): 122-131.
[3] GUO Xiaomeng, FANG Xiuqin, YANG Lulu, CAO Yu. Artificial neural network-based estimation of root zone soil moisture in the western Liaohe river basin[J]. Remote Sensing for Natural Resources, 2023, 35(2): 193-201.
[4] PANG Xin, LIU Jun. Effects of climate changes on the NDVI of vegetation in Asia[J]. Remote Sensing for Natural Resources, 2023, 35(2): 295-305.
[5] ZHANG Zhenqi, CAI Huiwen, ZHANG Pingping, WANG Zelin, LI Tingting. A GEE-based study on the temporal and spatial variations in the carbon source/sink function of vegetation in the Three-River Headwaters region[J]. Remote Sensing for Natural Resources, 2023, 35(1): 231-242.
[6] ZHANG Shu, ZHOU Zhongfa, WANG Lingyu, CHEN Quan, LUO Jiancheng, ZHAO Xin. Inversion of moisture in surface soil of farmland in karst mountainous areas using multi-temporal SAR images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 154-163.
[7] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[8] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[9] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[10] JIN Chengming, YANG Xingwang, JING Haitao. A RS-based study on changes in fractional vegetation cover in North Shaanxi and their driving factors[J]. Remote Sensing for Natural Resources, 2021, 33(4): 258-264.
[11] WEI Haohan, XU Renjie, YANG Qiang, ZHOU Quanping. Variation and effect analysis of the water level of the Taihu Lake based on multi-source satellite altimetry data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 130-137.
[12] SONG Chengyun, HU Guangcheng, WANG Yanli, TANG Chao. Downscaling FY-3B soil moisture based on apparent thermal inertia and temperature vegetation index[J]. Remote Sensing for Land & Resources, 2021, 33(2): 20-26.
[13] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[14] PAN Meng, CAO Yungang. Present status and perspectives of remote sensing survey of glacial lakes in High Asia[J]. Remote Sensing for Land & Resources, 2021, 33(1): 1-8.
[15] Hongxia LUO, Shengpei DAI, Maofen LI, Yuping LI, Qian ZHENG, Yingying HU. Relative roles of climate changes and human activities in vegetation variables in Hainan Island[J]. Remote Sensing for Land & Resources, 2020, 32(1): 154-161.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech