Please wait a minute...
REMOTE SENSING FOR LAND & RESOURCES    2011, Vol. 23 Issue (4) : 147-150     DOI: 10.6046/gtzyyg.2011.04.27
A Study of the Population Spatial Distribution Model Based on Spatial Statistics in Shandong Province
ZHU Yu-xin1,2, ZHANG Jin-zong2, Nie Qin2
1. Institute of Geography and Remote Sensing, Beijing Normal University, Beijing 100875, China;
2. College of Environment and Planning of Liaocheng University, Liaocheng 252059, China
Download: PDF(998 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Spatial autocorrelation has been applied to extensive data obtained from many research projects, and it is a common method for studying spatial distribution. Spatial autocorrelation analysis is a means for analyzing data correlation based on the spatial correlation analysis. It studies the correlation between one polygon and the nearest neighboring polygon through recognizing the similar degree of the major spatial object and other spatial objects. Using the 2010 census data and applying the spatial statistics and GIS, the authors analyzed the models of population spatial distribution of 17 prefectures in Shandong province by such means as quarters of population density, Moran's I and Local Moran's I. The population spatial correlation shows that there are no abnormal spatial areas of high density and low density in prefectures of Shandong province. The population spatial correlation shown by Moran's I and Local Moran's I indicates that the population density spatial distribution has spatial cluster, high-high cluster and low-low cluster. The general population density spatial distribution has three spatial belt-shaped regions, where the highest density is in the southwest areas, the density decreases to the lowest density in the northeast areas, and the similar population density areas are centralized in the vicinage. There are 5 "high-high" prefectures centralized in the west and south areas, 4 "low-low" prefectures centralized in the north areas, 2 "low-high" relation isolated points existent in Laiwu and Rizhao and a "high-high" isolated point existent in Weifang.

Keywords Qulity evalution of HyMap data      Image pre-processing      Information extraction      Mineral mapping      Payload index     
:  TP 79  
Issue Date: 16 December 2011
E-mail this article
E-mail Alert
Articles by authors
HUO Hong-yuan
NI Zhuo-ya
Cite this article:   
HUO Hong-yuan,ZHOU Ping,NI Zhuo-ya. A Study of the Population Spatial Distribution Model Based on Spatial Statistics in Shandong Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(4): 147-150.
URL:     OR

[1] 冯健.1980年代以来杭州市暂住人口的空间分布及演化[J].城市规划,2002,26(5):57-62.

[2] 冯健,周一星.1990年代北京市人口空间分布的最新变化[J].城市规划,2003,27(5):55-62.

[3] 周春山.广州市人口空间分布变动模式研究[J].地理学与国土研究,1996,12(3):21-26.

[4] 谢守红.广州市人口空间分布变动与郊区化研究--兼与北京、上海的比较[J].人口与经济,2007(1):5-9.

[5] 李粉玲,颉耀文.甘肃省民勤县人口空间分布初步研究[J].西北人口,2005(3):58-61.

[6] 刘艳,马劲松.核密度估计法在西藏人口空间分布研究中的应用[J].西藏科技,2007(4):6-8.

[7] 刘峰,马金辉,宋艳华,等.基于空间统计分析与GIS的人口空间分布模式研究--以甘肃省天水市为例[J].地理与地理信息科学,2004,20(6):18-21.

[8] 廖顺宝,孙九林.基于GIS的青藏高原人口统计数据空间化[J].地理学报,2003,58(1):25-33.

[9] 廖顺宝,李泽辉.基于人口分布与土地利用关系的人口数据空间化研究--以西藏自治区为例[J].自然资源学报,2003,18(6):559-665.

[10] 山东省统计局.山东省2010年第六次全国人口普查主要数据公报[EB/OL].(2011-05-05)[2011-05-08].山东统计信息网,

[11] 吕安民,李成名,林宗坚,等.中国省级人口增长率及其空间关联分析[J].地理学报,2002,57(2):143-150.

[12] 沈绿珠.空间关联分析及其应用[J].统计与决策,2004(8):28-30.

[13] 吴玉鸣,徐建华.中国区域经济增长集聚的空间统计分析[J].地理科学,2004,24(6):654-659.

[14] 张松林,张昆.全局空间自相关Moran指数和G系数对比研究[J].中山大学学报:自然科学版,2007,46(4):93-97.

[1] WEI Yingjuan, LIU Huan. Remote sensing-based mineralized alteration information extraction and prospecting prediction of the Beiya gold deposit, Yunnan Province[J]. Remote Sensing for Natural Resources, 2021, 33(3): 156-163.
[2] MOU Xiaoli, LI He, HUANG Chong, LIU Qingsheng, LIU Gaohuan. Application progress of Google Earth Engine in land use and land cover remote sensing information extraction[J]. Remote Sensing for Land & Resources, 2021, 33(2): 1-10.
[3] XIA Yan, HUANG Liang, CHEN Pengdi. Tobacco fine extraction from UAV image based on fuzzy-superpixel segmentation algorithm[J]. Remote Sensing for Land & Resources, 2021, 33(1): 115-122.
[4] WANG Lin, XIE Hongbo, WEN Guangchao, YANG Yunhang. A study on water information extraction method of cyanobacteria lake based on Landsat8[J]. Remote Sensing for Land & Resources, 2020, 32(4): 130-136.
[5] Dingjian JIN, Jianchao WANG, Fang WU, Zihong GAO, Yachao HAN, Qi LI. Aerial remote sensing technology and its applications in geological survey[J]. Remote Sensing for Land & Resources, 2019, 31(4): 1-10.
[6] Chang LIU, Kang YANG, Liang CHENG, Manchun LI, Ziyan GUO. Comparison of Landsat8 impervious surface extraction methods[J]. Remote Sensing for Land & Resources, 2019, 31(3): 148-156.
[7] Zhan YIN, Lijun ZHANG, Jianliang DUAN, Pei ZHANG. Improvement and application of forced invariance vegetation suppression in southern vegetation area[J]. Remote Sensing for Land & Resources, 2019, 31(2): 82-88.
[8] Yueru WANG, Pengpeng HAN, Shujing GUAN, Yu HAN, Lin YI, Tinggang ZHOU, Jinsong CHEN. Information extraction of Dracaena sanderiana planting area based on Landsat8 OLI data[J]. Remote Sensing for Land & Resources, 2019, 31(1): 133-140.
[9] Yong WANG, Yinling ZHANG, Shucheng YOU, Zhongwu WANG, Hai WEI, Yang LI. Checkup of land consolidation project using ZY1-02C data[J]. Remote Sensing for Land & Resources, 2018, 30(1): 144-149.
[10] XUE Qing, WU Wei, LI Mingsong, DONG Shuangfa, ZHANG Xinyi, SHI Haigang. Application of GF-1 satellite data to remote sensing monitoring of the mine[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 67-72.
[11] ZHANG Chuan, YE Fawang, XU Qingjun, LIU Hongcheng, MENG Shu. Mineral mapping and analysis of alteration characteristics using airborne hyperspectral remote sensing data in the Baiyanghe uranium and beryllium ore district,Xinjiang[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 160-166.
[12] DIAO Shujuan, LIU Chunling, ZHANG Tao, HE Peng, GUO Zhaocheng, TU Jienan. Extraction of remote sensing information for lake salinity level based on SVM: A case from Badain Jaran desert in Inner Mongolia[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 114-118.
[13] HU Yong, ZHANG Xiaocheng, MA Zezhong, ZHOU Zhiyue. Rural residential area extraction from UAV remote sensing imagery[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 96-101.
[14] ZHANG Bing, CUI Ximin, WEI Rui, SONG Baoping, ZHAO Xuyang. Classification and information extraction of plateau landform based on IRS-P6 satellite image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 120-125.
[15] LU Dingge, WU Hong, GUO Qi, CHEN Mengjie. Feature extraction and analysis of the Lijiang River water system form based on the Google Earth image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 161-167.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech