Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (3) : 148-156     DOI: 10.6046/gtzyyg.2019.03.19
|
Comparison of Landsat8 impervious surface extraction methods
Chang LIU1, Kang YANG1,2,3(), Liang CHENG1,2,3, Manchun LI1,2,3, Ziyan GUO1
1. School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023,China
2. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing 210023, China
3. Collaborative Innovation Center for the South Sea Studies, Nanjing 210023, China
Download: PDF(6313 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Impervious surface is an important land cover type. Extracting impervious surface from satellite images is crucial for land use and land cover change (LUCC) studies. Although several indexes have been proposed to detect impervious surface, there is a lack of systematic comparative analysis of these indexes. To address this problem, the authors estimated the performance of eight state-of-the-art impervious surface indexes using Landsat8 satellite images. The experimental results show that perpendicular impervious index (PII) performs best, yielding the highest detection accuracy of 89.6%. The accuracies of ratio resident-area index (RRI) and biophysical composition index (BCI) are slightly lower than the accuracy of PII, which are 87.5% and 87.4%, respectively. The accuracies of urban index (UI) and new built-up index (NBI) are 82.9% and 80.0%, respectively. Normalized difference impervious surface index (NDISI), normalized difference built-up index (NDBI), and index-based built-up index (IBI) fail to enhance the spectral characteristics of impervious surface from complex image background, thereby yielding the lowest accuracy (<75.0%). Importantly, the eight impervious surface indexes fail to distinguish the spectral characteristics of impervious surface from large bare land areas and the average detection accuracy is only 71.0%, hindering their applications in bare-land-rich areas.

Keywords impervious surface      remote sensing information extraction      impervious surface index      land cover      Landsat8     
:  TP79  
Corresponding Authors: Kang YANG     E-mail: kangyang@nju.edu.cn
Issue Date: 30 August 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chang LIU
Kang YANG
Liang CHENG
Manchun LI
Ziyan GUO
Cite this article:   
Chang LIU,Kang YANG,Liang CHENG, et al. Comparison of Landsat8 impervious surface extraction methods[J]. Remote Sensing for Land & Resources, 2019, 31(3): 148-156.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.03.19     OR     https://www.gtzyyg.com/EN/Y2019/V31/I3/148
Fig.1  Spectral characteristics of different land cover types in Landsat8 satellite image
名称 公 式 使用数据 实验区 是否进行大气校正
NDISI[12] NDISI=TIR-(MNDWI\VISIBLE+NIR+SWIR1)/3TIR+(MNDWI\VISIBLE+NIR+SWIR1)/3 Landsat7,
ASTER
福州、厦门
BCI[18] BCI=(TC1+TC3)/2-TC2(TC1+TC3)/2+TC2 Landsat7,
IKONOS,
MODIS
美国威斯康星
UI[19] UI=SWIR2-NIRSWIR2+NIR Landsat7 斯里兰卡科伦坡 未提及
IBI[20] IBI=NDBI-(MNDWI+SAVI)/2NDBI+(MNDWI+SAVI)/2 Landsat7 福州
NDBI[21] NDBI=SWIR1-NIRSWIR1+NIR Landsat5 无锡 未提及
NBI[22] NBI=RED×SWIR1NIR Landsat5/7 常州 未提及
PII[23] PII=mBLUE+nNIR+C Landsat8 武汉、北京
RRI[24] RRI=BLUENIR Landsat5 西安、咸阳
Tab.1  Summary of impervious surface indexes
Fig.2  Study areas distribution and Landsat8 satellite images
Fig.3  ROC curves of impervious surface indexes
不透水面指数 AUC 不透水面指数 AUC
实验区1 实验区2 实验区1 实验区2
PII 0.895 0.839 UI 0.850 0.812
BCI 0.893 0.837 IBI 0.787 0.769
RRI 0.885 0.835 NDISI 0.731 0.765
NDBI 0.777 0.760 NBI 0.849 0.812
Tab.2  AUC of impervious surface indexes in study areas 1 and 2
Fig.4  Optimal impervious surface extraction results of study area 1
Fig.5  Optimal impervious surface extraction results of study area 2
不透水面指数 实验区1 实验区2 不透水面指数 实验区1 实验区2
OA TPR FPR OA TPR FPR OA TPR FPR OA TPR FPR
PII 89.6 81.2 9.5 77.3 77.1 22.7 UI 82.9 77.7 16.5 70.1 80.2 30.4
BCI 87.4 83.7 12.2 77.4 77.3 22.6 IBI 72.4 77.7 28.2 63.5 79.6 37.2
RRI 87.5 82.1 12.0 78.3 75.1 21.5 NDISI 74.6 65.2 24.4 69.4 72.8 30.8
NDBI 73.4 74.3 26.7 59.7 82.1 41.3 NBI 80.0 82.0 20.3 72.3 78.9 28.0
Tab.3  Accuracy evaluation of impervious surface indexes using the optimal threshold(%)
Tab.4  Example zoomed images showing the impervious surface extraction results
[1] Arnold C L, Gibbons C J . Impervious surface coverage:The emergence of a key environmental indicator[J]. Journal of the American Planning Association, 1996,62(2):243-258.
[2] Zhang L, Weng Q, Shao Z . An evaluation of monthly impervious surface dyna-mics by fusing Landsat and MODIS time series in the Pearl River Delta,China,from 2000 to 2015[J]. Remote Sensing of Environment, 2017,201:99-114.
[3] Slonecker E T, Jennings D B, Garofalo D . Remote sensing of impervious surfaces:A review[J]. Remote Sensing Reviews, 2001,20(3):227-255.
[4] Song X P, Sexton J O, Huang C , et al. Characterizing the magnitude,timing and duration of urban growth from time series of Landsat-based estimates of impervious cover[J]. Remote Sensing of Environment, 2016,175:1-13.
[5] Weng Q . Remote sensing of impervious surfaces in the urban areas:Requirements,methods,and trends[J]. Remote Sensing of Environment, 2012,117:34-49.
[6] Dams J, Dujardin J, Reggers R , et al. Mapping impervious surface change from remote sensing for hydrological modeling[J]. Journal of Hydrology, 2013,485:84-95.
[7] Sofia G, Roder G, Dalla F , et al. Flood dynamics in urbanised landscapes:100 years of climate and humans’ interaction[J]. Scientific Reports, 2017,7:40527.
[8] Mathew A, Khandelwal S, Kaul N . Spatial and temporal variations of urban heat island effect and the effect of percentage impervious surface area and elevation on land surface temperature:Study of Chandigarh City,India[J]. Sustainable Cities and Society, 2016,26:264-277.
[9] Xiao R, Ouyang Z, Zheng H , et al. Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing,China[J]. Journal of Environmental Sciences, 2007,19(2):250-256.
[10] 徐涵秋 . 城市不透水面与相关城市生态要素关系的定量分析[J]. 生态学报, 2009,29(5):2456-2462.
doi: 10.3321/j.issn:1000-0933.2009.05.032 url: http://d.wanfangdata.com.cn/Periodical/stxb200905032
[10] Xu H Q . Quantitative analysis on the relationship of urban impervious surface with other components of the urban ecosystem[J]. Acta Ecologica Sinica, 2009,29(5):2456-2462.
[11] Liu C, Shao Z, Chen M , et al. MNDISI:A multi-source composition index for impervious surface area estimation at the individual city scale[J]. Remote Sensing Letters, 2013,4(8):803-812.
[12] 徐涵秋 . 一种快速提取不透水面的新型遥感指数[J]. 武汉大学学报(信息科学版), 2008,33(11):1150-1153.
url: http://www.cnki.com.cn/Article/CJFDTotal-WHCH200811012.htm
[12] Xu H Q . A new remote sensing index for fastly extracting impervious surface information[J]. Geomatics and Information Science of Wuhan University, 2008,33(11):1150-1153.
[13] Yang L, Huang C, Homer C G , et al. An approach for mapping large-area impervious surfaces:Synergistic use of Landsat-7 ETM+ and high spatial resolution imagery[J]. Canadian Journal of Remote Sensing, 2003,29(2):230-240.
[14] Cao X, Chen J, Imura H , et al. A SVM-based method to extract urban areas from DMSP-OLS and SPOT VGT data[J]. Remote Sensing of Environment, 2009,113(10):2205-2209.
[15] Pandey B, Joshi P K, Seto K C . Monitoring urbanization dynamics in India using DMSP/OLS night time lights and SPOT-VGT data[J]. International Journal of Applied Earth Observation and Geoinformation, 2013,23:49-61.
[16] Wu C S, Murray A T . Estimating impervious surface distribution by spectral mixture analysis[J]. Remote Sensing of Environment, 2003,84(4):493-505.
[17] Yang J, He Y . Automated mapping of impervious surfaces in urban and suburban areas:Linear spectral unmixing of high spatial resolution imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2017,54:53-64.
[18] Deng C, Wu C . BCI:A biophysical composition index for remote sensing of urban environments[J]. Remote Sensing of Environment, 2012,127:247-259.
[19] Kawamura M, Jayamana S, Tsujiko Y . Relation between social and environmental conditions in Colombo Sri Lanka and the urban index estimated by satellite remote sensing data[J]. The International Archives of Photogrammetry and Remote Sensing, 1996,31:321-326.
[20] Xu H . A new index for delineating built-up land features in satellite imagery[J]. International Journal of Remote Sensing, 2008,29(14):4269-4276.
[21] 查勇, 倪绍祥, 杨山 . 一种利用TM图像自动提取城镇用地信息的有效方法[J]. 遥感学报, 2003,7(1):37-40.
doi: 10.11834/jrs.20030107
[21] Zha Y, Ni S X, Yang S . An effective approach to automatically extract urban land-use from TM imagery[J]. Journal of Remote Sensing, 2003,7(1):37-40.
[22] 陈洁丽, 刘永学, 李满春 , 等. 基于归一化指数分析的居民地遥感信息提取[J]. 测绘科学, 2010,35(2):204-206.
[22] Chen J L, Liu Y X, Li M C , et al. Extracting remote sensing information of residential areas based on the analysis of normalized difference index[J]. Science of Surveying and Mapping, 2010,35(2):204-206.
[23] 田玉刚, 徐韵, 杨晓楠 . 一种提取城市多种不透水层的垂直不透水层指数[J]. 测绘学报, 2017,46(4):468-477.
[23] Tian Y G, Xu Y, Yang X N . Perpendicular impervious index for remote sensing of multiple impervious surface extraction in cities[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(4):468-477.
[24] 吴宏安, 蒋建军, 张海龙 , 等. 比值居民地指数在城镇信息提取中的应用[J]. 南京师大学报(自然科学版), 2006,29(3):118-121.
[24] Wu H A, Jiang J J, Zhang H L , et al. Application of ratio resident-area index to retrieve urban residential areas based on Landsat TM data[J]. Journal of Nanjing Normal University (Natural Science Edition), 2006,29(3):118-121.
[25] Ma Y, Kuang Y, Huang N . Coupling urbanization analyses for studying urban thermal environment and its interplay with biophysical parameters based on TM/ETM+ imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2010,12(2):110-118.
[26] Xu H . Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006,27(14):3025-3033.
[27] Huete A R . A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988,25(3):295-309.
[28] Loveland T R, Irons J R . Landsat 8:The plans, the reality,and the legacy[J]. Remote Sensing of Environment, 2016,185:1-6.
[29] Song C, Woodcock C E, Seto K C , et al. Classification and change detection using Landsat TM data:When and how to correct atmospheric effects?[J] Remote Sensing of Environment, 2001,75(2):230-244.
[30] He C, Shi P, Xie D , et al. Improving the normalized difference built-up index to map urban built-up areas using a semiautomatic segmentation approach[J]. Remote Sensing Letters, 2010,1(4):213-221.
[31] Li H, Wang C, Zhong C , et al. Mapping urban bare land automatically from Landsat imagery with a simple index[J]. Remote Sensing, 2017,9(3):249.
[32] Fawcett T . An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006,27(8):861-874.
[33] Schisterman E F, Perkins N J, Liu A , et al. Optimal cut-point and its corresponding Youden index to discriminate individuals using pooled blood samples[J]. Epidemiology, 2005,16(1):73-81.
[34] Youden W J . Index for rating diagnostic tests[J]. Cancer, 1950,3(1):32-35.
[35] Baig M H A, Zhang L, Shuai T , et al. Derivation of a tasseled cap transformation based on Landsat8 at-satellite reflectance[J]. Remote Sensing Letters, 2014,5(5):423-431.
[36] Small C . Estimation of urban vegetation abundance by spectral mixture analysis[J]. International Journal of Remote Sensing, 2001,22(7):1305-1334.
[37] 杨晓楠, 徐韵, 田玉刚 . 一种用于城市信息提取的改进居民地指数[J]. 国土资源遥感, 2016,28(4):127-134.doi: 10.6046/gtzyyg.2016.04.20.
doi: 10.6046/gtzyyg.2016.04.20
[37] Yang X N, Xu Y, Tian Y G . A study of urban area extraction with the modified human settlement index[J]. Remote Sensing for Land and Resources, 2016,28(4):127-134.doi: 10.6046/gtzyyg.2016.04.20.
[38] 徐涵秋, 王美雅 . 地表不透水面信息遥感的主要方法分析[J]. 遥感学报, 2016,20(5):1270-1289.
[38] Xu H Q, Wang M Y . Remote sensing-based retrieval of ground impervious surfaces[J]. Journal of Remote Sensing, 2016,20(5):1270-1289.
[39] Herold M, Gardner M E, Roberts D A . Spectral resolution requirements for mapping urban areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(9):1907-1919.
[40] Okujeni A, van der Linden S, Hostert P . Extending the vegetation-impervious-soil model using simulated EnMAP data and machine learning[J]. Remote Sensing of Environment, 2015,158:69-80.
[1] FANG Mengyang, LIU Xiaohuang, KONG Fanquan, LI Mingzhe, PEI Xiaolong. A method for creating annual land cover data based on Google Earth Engine: A case study of the Yellow River basin[J]. Remote Sensing for Natural Resources, 2022, 34(1): 135-141.
[2] ZHAO Yi, XU Jianhui, ZHONG Kaiwen, WANG Yunpeng, HU Hongda, WU Pinghao. Impervious surface extraction based on Sentinel-2A and Landsat8[J]. Remote Sensing for Land & Resources, 2021, 33(2): 40-47.
[3] MOU Xiaoli, LI He, HUANG Chong, LIU Qingsheng, LIU Gaohuan. Application progress of Google Earth Engine in land use and land cover remote sensing information extraction[J]. Remote Sensing for Land & Resources, 2021, 33(2): 1-10.
[4] QIU Yifan, CHAI Dengfeng. A deep learning method for Landsat image cloud detection without manually labeled data[J]. Remote Sensing for Land & Resources, 2021, 33(1): 102-107.
[5] WANG Lin, XIE Hongbo, WEN Guangchao, YANG Yunhang. A study on water information extraction method of cyanobacteria lake based on Landsat8[J]. Remote Sensing for Land & Resources, 2020, 32(4): 130-136.
[6] CAI Yaotong, LIU Shutong, LIN Hui, ZHANG Meng. Extraction of paddy rice based on convolutional neural network using multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 97-104.
[7] LI Guoqing, HUANG Jinghua, LIU Guan, LI Jie, ZHAI Bochao, DU Sheng. A study of the landscape fragmentations of land cover structure based on Landsat8 remote sensing image: A case study of Mata watershed in Yan’an, Shaanxi Province[J]. Remote Sensing for Land & Resources, 2020, 32(3): 121-128.
[8] CAO Yong, TAO Yuxiang, DENG Lu, LUO Xiaobo. An impervious surface index construction for restraining bare land[J]. Remote Sensing for Land & Resources, 2020, 32(3): 71-79.
[9] Haigang SHI, Chunli LIANG, Jianyong ZHANG, Chunlei ZHANG, Xu CHENG. Remote sensing survey of the influence of coastline changes on the thermal discharge in the vicinity of Tianwan Nuclear Power Station[J]. Remote Sensing for Land & Resources, 2020, 32(2): 196-203.
[10] Yuting YANG, Hailan CHEN, Jiaqi ZUO. Remote sensing monitoring of impervious surface percentage in Hangzhou during 1990—2017[J]. Remote Sensing for Land & Resources, 2020, 32(2): 241-250.
[11] Ru WANG, Yanfang ZHANG, Hongmin ZHANG, Yun LI. Study on the relationship between impervious surface coverage and artificial heat in new urban districts: A case study of Xixian New District, Shaanxi Province[J]. Remote Sensing for Land & Resources, 2020, 32(1): 247-254.
[12] Chao MA, Panli CAI. Spatio-temporal changes and driving factors of environmental and ecological index in Culai-Lianhua area[J]. Remote Sensing for Land & Resources, 2019, 31(4): 199-208.
[13] Jiaqi ZUO, Zegen WANG, Jinhu BIAN, Ainong LI, Guangbin LEI, Zhengjian ZHANG. A review of research on remote sensing for ground impervious surface percentage retrieval[J]. Remote Sensing for Land & Resources, 2019, 31(3): 20-28.
[14] Qinglin MENG, Mingyu LI, Chunying REN, Zongming WANG, Yanlin TIAN. Dynamic assessment of habitat quality in eastern Jilin Province based on HSI model[J]. Remote Sensing for Land & Resources, 2019, 31(3): 140-147.
[15] Dazhao WANG, Simeng WANG, Chang HUANG. Comparison of Sentinel-2 imagery with Landsat8 imagery for surface water extraction using four common water indexes[J]. Remote Sensing for Land & Resources, 2019, 31(3): 157-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech