Please wait a minute...
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (1) : 71-77     DOI: 10.6046/gtzyyg.2017.01.11
Technology and Methodology |
Extraction of Nitaria tangutorum dune in Minqin County based on GF-2 data
HUA Yongchun1, LI Zengyuan1, GAO Zhihai1, GUO Zhong2
1. Research Institute of Resource Information, Chinese Academy of Forestry, Beijing 100091, China;
2. Inner Mongolia Academy of Forestry Science, Hohhot 010010, China
Download: PDF(7596 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

In this paper, the authors used GF-2 remote sensing data to extract Nitaria tangutorum dune in Minqin County. The authors made full use of the minimum/maximum difference texture information and length-width ratio as well as area of geometric features of Nitaria tangutorum dune, by using multiresolution segmentation, object-oriented classification and threshold extraction methods, made quantitative extraction of the Nitaria tangutorum dune. The results show that the spatial position accuracy of Nitaria tangutorum dune can reach 94%, which could completely meet the requirement of the research. Compared with the actual area of Nitaria tangutorum dune, the linear regression R2 can reach 0.77, the standard deviation is 5.77, but the area extraction accuracy remains unsatisfactory, which needs further improvement.

Keywords big data      remote sensing data      management and service      spatial analysis      geographic national conditions monitoring     
:  TP751.1  
Issue Date: 23 January 2017
E-mail this article
E-mail Alert
Articles by authors
Cite this article:   
CHENG Tao. Extraction of Nitaria tangutorum dune in Minqin County based on GF-2 data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 71-77.
URL:     OR

[1] 杜建会,严平,丁连刚,等.民勤绿洲不同演化阶段白刺灌丛沙堆表面土壤理化性质研究[J].中国沙漠, 2009,29(2):248-253. Du J H,Yan P,Ding L G,et al.Soil physical and chemical properties of Nitraria tangutorun Nebkhas surface at different development stages in Minqin Oasis[J].Journal of Desert Research,2009,29(2):248-253.
[2] 刘瑛心.中国白刺属植物的分类和分布(治沙研究,第7号)[M].北京:科学出版社,1965. Liu Y X.The Classification and Distribution of Chinese Nitaria Tangutorum(Sand Research,NO.7)[M].Beijing:Science Press,1965.
[3] 李进军,马存世,张有佳,等.民勤连古城自然保护区白刺生长发育影响因素[J].东北林业大学学报,2010,38(10):41-43. Li J J,Ma C S,Zhang Y J,et al.Influencing factors on growth and development of Nitraria in minqin Liangucheng nature reserve[J].Journal of Northeast Forestry University,2010,38(10):41-43.
[4] 宛涛,蔡萍,伊卫东,等.内蒙古白刺属植物遗传多样性的RAPD分析[J].干旱地区农业研究,2007,25(1):225-229. Wan T,Cai P,Yi W D,et al.RAPD analysis on genetic diversity of nitavia in Inner Mongolia[J].Agricultural Research in the Arid Areas,2007,25(1):225-229.
[5] 徐兰英,李凤日.基于分形理论下的沙漠植被适应性群团抽样技术[J].植物研究,2009,29(3):333-338. Xu L Y,Li F R. Adaptive cluster sampling technique for desert vegetation based on fractal theory[J].Bulletin of Botanical Research,2009,29(3):333-338.
[6] 王继和,马全林.民勤绿洲人工梭梭林退化现状、特征与恢复对策[J].西北植物学报,2003,23(12):2107-2112. Wang J H,Ma Q L.Study on restoration strategies,characteristics and status of degenerated artificial Haloxylon ammodendron communities at the edge of Minqin Oasis[J].Acta Botanica Boreali-occidentalia Sinica,2003,23(12):2107-2112.
[7] Dorst L.Quantitative analysis of interferograms using image processing techniques[C]//ICO-13 Conference Digest.Sapporo,Japan,1984:476-477.
[8] Werman M,Peleg S.Min-Max Filters in Texture Analysis[C]//IEEE PAMI-7,1986:730-733.
[9] 侯欢欢,齐小顺.图像处理中的中值滤波、最大值、最小值滤波及其应用研究[J].消费电子,2014(6):229. Hou H H,Qi X S.The application research of median filter,maximum and minimum filter in image processing[J].Consumer Electronics Review,2014(6):229.
[10] 韩学锋.基于高分辨率遥感林分调查因子的提取研究[D].福州:福建师范大学,2008. Han X F.A Study on the Extraction of the Stand Description Factors from High Resolution Remote Sensing Images[D].Fuzhou:Fujian Normal University,2011.
[11] 李晶莹.基于面向对象的高分辨率遥感影像土地沙化调查——以青海省玛多县典型区为例[D].西宁:青海师范大学,2011. Li J Y.Based on the Object-Oriented and the Remote Sensing Image of High-Resolution Classify Sandy Desertifieation in MaDuo Courty of Qinghai Priviule[D].Xining:Qinghai Normal University,2011.
[12] Haralick R M,Shaprio L G.Image segmentation techniques[J].Computer Vision,Graphics,and Image Processing,1985,29(1):100-132.
[13] Johnson B,Xie Z X.Unsupervised image segmentation evaluation and refinement using a multi-scale approach[J].ISPRS Journal of Photogrammetry and Remote Sensing,2011,66(4):473-483.
[14] 于欢,张树清,孔博,等.面向对象遥感影像分类的最优分割尺度选择研究[J].中国图象图形学报,2010,15(2):352-360. Yu H,Zhang S Q,Kong B,et al.Optimal segmentation scale selection for object-oriented remote sensing image classification[J].Journal of Image and Graphics,2010(2):352-360.
[15] Woodcock C E.The factor of scale in remote sensing[J].Remote Sensing of Environment,1987,21(3):311-332.
[16] Atkinson P M,Kelly R E J.Scaling-up point snow depth data in the U.K.for comparison with SSM/I imagery[J].International Journal of Remote Sensing,1994,18(2):437-443.
[17] Atkinson P M,Curran P J.Choosing an appropriate spatial resolution for remote sensing investigations[J].Photogrammetric Engineering and Remote Sensing,1997,63(12):1345-1351.

[1] LI Dong, TANG Cheng, ZOU Tao, HOU Xiyong. Detection and assessment of the physical state of offshore artificial reefs[J]. Remote Sensing for Natural Resources, 2022, 34(1): 27-33.
[2] Kailun JIN, Lu HAO. Evapotranspiration estimation in the Jiangsu-Zhejiang-Shanghai Area based on remote sensing data and SEBAL model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 204-212.
[3] Renbo SONG, Yuxin ZHU, Shangshan DING, Qiaoning HE, Xiyuan WANG, Yuexiang WANG. An automatic method for extracting skeleton lines from arbitrary polygons based on GIS spatial analysis[J]. Remote Sensing for Land & Resources, 2020, 32(1): 51-59.
[4] Weidong ZHAO, Yong ZHENG, Haonan ZHANG, Qiong JIANG, Jiajia WEI. Remote sensing interpretation and spatial distribution characteristics of the Anhui segment of Tanlu fault zone based on multi-source data[J]. Remote Sensing for Land & Resources, 2019, 31(4): 79-87.
[5] Ling CHEN, Jia JIA, Haiqing WANG. An overview of applying high resolution remote sensing to natural resources survey[J]. Remote Sensing for Land & Resources, 2019, 31(1): 1-7.
[6] Wei ZHANG, Jianwei QI, Ying CHEN, Xu HAN. A study of block adjustment of domestic multi-source high resolution satellite images[J]. Remote Sensing for Land & Resources, 2019, 31(1): 125-132.
[7] Yuanwen ZENG, Yi DI, Yan HU, Jing CHEN, Songjiang DUAN. An analysis of spatial distribution and optimization of rural settlements:A case study of Niejia Village in Shitan Town,Hechuan District,Chongqing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 113-119.
[8] Jiasi YI, Xiangyun HU. Extracting impervious surfaces from multi-source remote sensing data based on Grabcut[J]. Remote Sensing for Land & Resources, 2018, 30(3): 174-180.
[9] Jingpeng GUO, Yinghui ZHAO, Huiqian CHEN, Ya’nan XIANG, Xumeng ZHAO, Chang QIAO. Remote sensing monitoring for temporal and spatial expansion of construction land of industrial cities in Heilongjiang[J]. Remote Sensing for Land & Resources, 2018, 30(3): 204-212.
[10] Yangming WANG, Jingfa ZHANG, Zhirong LIU, Xuhui SHEN. Active faults interpretation of Shannan area in Tibet based on multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2018, 30(3): 230-237.
[11] Xiaoping ZHANG, Ying LYU, Huaguo ZHANG, Chaokui LI. Remote sensing analysis of impervious surface changes in Zhoushan Islands during 1990—2011[J]. Remote Sensing for Land & Resources, 2018, 30(2): 178-185.
[12] Xiaogang HOU, Zhaojun ZHENG, Shuai LI, Xuehua CHEN, Yu CUI. Generation of daily cloudless snow cover product in the past 15 years in Xinjiang and accuracy validation[J]. Remote Sensing for Land & Resources, 2018, 30(2): 214-222.
[13] Wenquan DONG, Jihua MENG. Review of spatiotemporal fusion model of remote sensing data[J]. Remote Sensing for Land & Resources, 2018, 30(2): 1-11.
[14] GUO Liqin, ZHAO Zhifang, DAI Qixue, LIANG Mingyue, FU Yixun, CHEN Bailian. Temporal and spatial evolution and genesis of rocky desertification based on RS and GIS in Wenshan Prefecture[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 106-113.
[15] DAI Jingjing, WANG Denghong, WU Yanan. Investigation of rare metal mine using high resolution remote sensing data: A case study of No. 414 rare metal mine in Yichun, Jiangxi Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 104-110.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech