Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (4) : 77-82     DOI: 10.6046/gtzyyg.2016.04.12
Technology and Methodology |
Knowledge driven change detection method for aircraft targets
XIANG Shengwen, WEN Gongjian, GAO Feng
ATR Key Laboratory, School of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
Download: PDF(3676 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Aimed at high-resolution optical sense images, this paper proposes a knowledge driven change detection method for the aircraft targets. First, a spatial mask image of the airport is set up according to the geographical position information and the candidate area of aircraft targets is obtained. Second, the control points' information in the target area is utilized to register input images. As changes of aircraft targets can lead to significant texture changes in area, the authors detected the changes by extracting texture features. A weak texture elimination and edge suppression method was put forward to reduce the false-alarm rate. Finally, the mathematical morphological operation method was employed to eliminate some isolation points and acquire the detection results. Experiments show that the proposed method can efficiently reduce the false-alarm caused by registration error and skirt response, with the detection rate of aircraft targets reaching 92.47%.

Keywords UAV      object-oriented segmentation      mean shift      information extraction     
:  TP751.1  
Issue Date: 20 October 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU Yong
ZHANG Xiaocheng
MA Zezhong
ZHOU Zhiyue
Cite this article:   
HU Yong,ZHANG Xiaocheng,MA Zezhong, et al. Knowledge driven change detection method for aircraft targets[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 77-82.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2016.04.12     OR     https://www.gtzyyg.com/EN/Y2016/V28/I4/77

[1] Singh A.Review article digital change detection techniques using remotely-sensed data[J].International Journal of Remote Sensing,1989,10(6):989-1003.
[2] Wang B,Choi S,Byun Y,et al.Object-based change detection of very high resolution satellite imagery using the cross-sharpening of multitemporal data[J].IEEE Geoscience and Remote Sensing Letters,2015,12(5):1151-1155.
[3] Hussain M,Chen D M,Cheng A,et al.Review article change detection from remotely sensed images:From pixel-based to object-based approaches[J].ISPRS Journal of Photogrammetry and Remote Sensing,2013,80:91-106.
[4] 张永梅,李立鹏,姜明,等.综合像素级和特征级的建筑物变化检测方法[J].计算机科学,2013,40(1):286-293. Zhang Y M,Li L P,Jiang M,et al.Change detection method for buildings based on pixel-level and feature-level[J].Computer Science,2013,40(1):286-293.
[5] 祝锦霞.高分辨率遥感影像变化检测的关键技术研究[D].杭州:浙江大学,2011. Zhu J X.The Key Technology of Change Detection Using High Resolution Remotely Sensed Imagery[D].Hangzhou:Zhejiang University,2011.
[6] 邓小炼,王长耀.一种基于动态模板和等角变换的遥感影像地面控制点匹配算法[J].测绘科学,2005,30(4):51-53. Deng X L,Wang C Y.A remote sensing image ground control point matching algorithm based on dynamic template and conformal transform[J].Science of Surveying and Mapping,2005,30(4):51-53.
[7] Xiong Z,Zhang Y.A novel interest-point-matching algorithm for high-resolution satellite images[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(12):4189-4200.
[8] 周绍光,孙金彦,凡莉,等.高分辨率遥感影像的建筑物轮廓信息提取方法[J].国土资源遥感,2015,27(3):52-58.doi:10.6046/gtzyyg.2015.03.10. Zhou S G,Sun J Y,Fan L,et al.Extraction of building contour from high resolution images[J].Remote Sensing for Land and Resources,2015,27(3):52-58.doi:10.6046/gtzyyg.2015.03.10.
[9] 王东广,肖鹏峰,宋晓群,等.结合纹理信息的高分辨率遥感图像变化检测方法[J].国土资源遥感,2012,24(4):76-81.doi:10.6046/gtzyyg.2012.04.13. Wang D G,Xiao P F,Song X Q,et al.Change detection method for high resolution remote sensing image in association with textural and spectral information[J].Remote Sensing for Land and Resources,2012,24(4):76-81.doi:10.6046/gtzyyg.2012.04.13.
[10] 刘小洲.高分辨率遥感图像的变化检测技术研究[D].长沙:国防科学技术大学,2007. Liu X Z.Researches on Change Detection from High Resolution Remote Sensing Images[D].Changsha:National University of Defense Technology,2007.
[11] 侯群群,王飞,严丽.基于灰度共生矩阵的彩色遥感图像纹理特征提取[J].国土资源遥感,2013,25(4):26-32.doi:10.6046/gtzyyg.2013.04.05. Hou Q Q,Wang F,Yan L.Extraction of color image texture feature based on gray-level co-occurrence matrix[J].Remote Sensing for Land and Resources,2013,25(4):26-32.doi:10.6046/gtzyyg.2013.04.05.
[12] Haralick R M,Shanmugam K,Dinstein I H.Textural features for image classification[J].IEEE Transactions on Systems,Man,and Cybernetics,1973,SMC-3(6):610-621.

[1] ZHAO Xiaowei, HUANG Yang, WANG Yongqiang, CHU Ding. Estimation of maize seedling number based on UAV multispectral data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 106-114.
[2] WU Fang, LI Yu, JIN Dingjian, LI Tianqi, GUO Hua, ZHANG Qijie. Application of 3D information extraction technology of ground obstacles in the flight trajectory planning of UAV airborne geophysical exploration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 286-292.
[3] REN Chaofeng, PU Yuchi, ZHANG Fuqiang. A method for extracting match pairs of UAV images considering geospatial information[J]. Remote Sensing for Natural Resources, 2022, 34(1): 85-92.
[4] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[5] BAI Junlong, WANG Zhangqiong, YAN Haitao. A K-means clustering-guided threshold-based approach to classifying UAV remote sensed images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 114-120.
[6] WEI Yingjuan, LIU Huan. Remote sensing-based mineralized alteration information extraction and prospecting prediction of the Beiya gold deposit, Yunnan Province[J]. Remote Sensing for Natural Resources, 2021, 33(3): 156-163.
[7] ZANG Chuankai, SHEN Fang, YANG Zhengdong. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
[8] LI Yang, YUAN Lin, ZHAO Zhiyuan, ZHANG Jinlei, WANG Xianye, ZHANG Liquan. Inversion of tidal flat topography based on unmanned aerial vehicle low-altitude remote sensing and field surveys[J]. Remote Sensing for Natural Resources, 2021, 33(3): 80-88.
[9] MOU Xiaoli, LI He, HUANG Chong, LIU Qingsheng, LIU Gaohuan. Application progress of Google Earth Engine in land use and land cover remote sensing information extraction[J]. Remote Sensing for Land & Resources, 2021, 33(2): 1-10.
[10] XIONG Yujiu, ZHAO Shaohua, YAN Chunhua, QIU Gouyu, SUN Hua, WANG Yanlin, QIN Longjun. A comparative study of methods for monitoring and assessing urban green space resources at multiple scales[J]. Remote Sensing for Land & Resources, 2021, 33(1): 54-62.
[11] CAI Xiang, LI Qi, LUO Yan, QI Jiandong. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land & Resources, 2021, 33(1): 63-71.
[12] XIA Yan, HUANG Liang, CHEN Pengdi. Tobacco fine extraction from UAV image based on fuzzy-superpixel segmentation algorithm[J]. Remote Sensing for Land & Resources, 2021, 33(1): 115-122.
[13] QIN Qiming, CHEN Jin, ZHANG Yongguang, REN Huazhong, WU Zihua, ZHANG Chishan, WU Linsheng, LIU Jianli. A discussion on some frontier directions of quantitative remote sensing[J]. Remote Sensing for Land & Resources, 2020, 32(4): 8-15.
[14] CHEN Pengdi, HUANG Liang, XIA Yan, YU Xiaona, GAO Xiaxia. Detection and recognition of road traffic signs in UAV images based on Mask R-CNN[J]. Remote Sensing for Land & Resources, 2020, 32(4): 61-67.
[15] WANG Wei, WANG Xinsheng, YAO Chan, JIN Tian, WU Jiayu, SU Wei. Estimation of wheat planting density using UAV image[J]. Remote Sensing for Land & Resources, 2020, 32(4): 111-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech