Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2015, Vol. 27 Issue (2) : 69-74     DOI: 10.6046/gtzyyg.2015.02.11
Technology and Methodology |
Leaf area index retrieval of orchards based on airborne MASTER data
CHEN Jian, WANG Wenjun, SHENG Shijie, ZHANG Xuehong
School of Geography and Remote Sensing, Nanjing University of Information Science and Technology, Nanjing 210044, China
Download: PDF(3861 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Leaf area index(LAI)is an important parameter for decrypting canopy structure, and the accurate acquisition of orchards LAI plays an important role in monitoring the growing condition and estimating the yield of orchards. In this paper, the orchard blocks in the middle of California in USA were chosen as the study area, and LAI was retrieved using normalized difference water index (NDWI) through comparing regression models with surveyed leaf area indices and three vegetation indices composed of normalized difference vegetation index (NDVI), normalized difference infrared index (NDII) and NDWI based on the MODIS/ASTER airborne simulator(MASTER)image, which acquired flying along the solar plane. The results show that the image acquired by flying perpendicular to the solar plane has the phenomenon of maximum brightness gradients because of the bidirectional reflectance of surface object, whereas the image acquired by flying along the solar plane fails to show such a phenomenon. The comparison between three vegetation index models also shows that NDVI is easy to reach saturation in higher coverage area, and NDWI is more suitable for LAI retrieval in the study area because NDWI model has higher R2 and smaller RMSE. The results of this study can enrich the LAI retrieval theory and provide theoretical and data support for LAI scale problem.

Keywords tailings pond      high resolution remote sensing images      remote sensing monitoring      Heilongjiang Province     
:  TP751.1  
Issue Date: 02 March 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAO Yongzhi
CHU Yu
LIANG Wei
Cite this article:   
GAO Yongzhi,CHU Yu,LIANG Wei. Leaf area index retrieval of orchards based on airborne MASTER data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 69-74.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2015.02.11     OR     https://www.gtzyyg.com/EN/Y2015/V27/I2/69

[1] 刘洋,刘荣高,陈镜明,等.叶面积指数遥感反演研究进展与展望[J].地球信息科学学报,2013,15(3):734-743. Liu Y,Liu R G,Chen J M,et al.Current status and perspectives of leaf area index retrieval from optical remote sensing data[J].Journal of Geo-Information Science,2013,15(3):734-743.

[2] Liu Y,Liu R G,Chen J M.Retrospective retrieval of long-term consistent global leaf area index(1981—2011) from combined AVHRR and MODIS data[J].Journal of Geophysical Research:Biogeosciences(2005-2012),2012:117(G4).doi:10.1029/2012JG002084.

[3] Myneni R B,Hoffman S,Knyazikhin Y,et al.Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data[J].Remote Sensing of Environment,2002,83(1/2):214-231.

[4] Chen J M,Cihlar J.Retrieving leaf area index of boreal conifer forests using Landsat TM images[J].Remote Sensing of Environment,1996,55(2):153-162.

[5] Baret F,Hagolle O,Geiger B,et al.LAI,FAPAR and cover CYCLOPES global products derived from VEGETATION.Part 1:Principles of the algorithm[J].Remote Sensing of Environment,2007,110(3):275-286.

[6] Weiss M,Baret F,Garrigues S,et al.LAI and FAPAR CYCLOPES global products derived from VEGETATION.Part 2:Validation and comparison with MODIS collection 4 products[J].Remote Sensing of Environment,2007,110(3):317-331.

[7] 陈健,倪绍祥,李云梅,等.芦苇地叶面积指数的遥感反演[J].国土资源遥感,2005,17(2):20-23.doi:10.6046/gtzyyg.2005.02.05. Chen J,Ni S X,Li Y M,et al.Remote sensing LAI retrieval of reed marsh[J].Remote Sensing for Land and Resources,2005,17(2):20-23.doi:10.6046/gtzyyg.2005.02.05.

[8] 周宇宇,唐世浩,朱启疆,等.基于新型机载多角度传感器AMTIS的LAI反演[J].国土资源遥感,2003,15(4):9-12.doi:10.6046/gtzyyg.2003.04.03. Zhou Y Y,Tang S H,Zhu Q J,et al.LAI retrieval based on the new airborne multi-angle sensor AMTIS[J].Remote Sensing for Land and Resources,2003,15(4):9-12.doi:10.6046/gtzyyg.2003.04.03.

[9] Simic A,Chen J M,Freemantle J R,et al.Improving clumping and LAI algorithms based on multiangle airborne imagery and ground measurements[J].IEEE Transactions on Geoscience and Remote Sensing,2009,48(4):1742-1759.

[10] Manninen T,Korhonen L,Voipio P,et al.Leaf area index(LAI) estimation of boreal forest using wide optics airborne winter photos[J].Remote Sensing,2009,1(4):1380-1394.

[11] Asmat A,Milton E J,Atkinson P M.Empirical correction of multiple flightline hyperspectral aerial image mosaics[J].Remote Sensing of Environment,2011,115(10):2664-2673.

[12] Kennedy R E,Cohen W B,Takao G.Empirical methods to compensate for a view-angle-dependent brightness gradient in AVIRIS imagery[J].Remote Sensing of Environment,1997,62(3):277-291.

[13] Schiefer S,Hostert P,Damm A.Correcting brightness gradients in hyperspectral data from urban areas[J].Remote Sensing of Environment,2006,101(1):25-37.

[14] Cheng T,Riano D,Koltunov A,et al.Detection of diurnal variation in orchard canopy water content using MODIS/ASTER airborne simulator(MASTER) data[J].Remote Sensing of Environment,2013,132:1-12.

[15] Hook S J,Myers J,Thome K J,et al.The MODIS/ASTER airborne simulator(MASTER):A new instrument for earth science studies[J].Remote Sensing of Environment,2001,76(1):93-102.

[16] 侯学会,牛铮,黄妮,等.小麦生物量和真实叶面积指数的高光谱遥感估算模型[J].国土资源遥感,2012,24(4):30-35.doi:10.6046/gtzyyg.2012.04.06. Hou X H,Niu Z,Huang N,et al.The hyperspectral remote sensing estimation models of total biomass and true LAI of wheat[J].Remote Sensing for Land and Resources,2012,24(4):30-35.doi:10.6046/gtzyyg.2012.04.06.

[17] 傅银贞,汪小钦,江洪.马尾松LAI与植被指数的相关性研究[J].国土资源遥感,2010,22(3):41-46.doi:10.6046/gtzyyg.2010.03.09. Fu Y Z,Wang X Q,Jiang H.The correlation between LAI and vegetation index of masson pine[J].Remote Sensing for Land and Resources,2010,22(3):41-46.doi:10.6046/gtzyyg.2010.03.09.

[18] Hardisky M A,Klemas V,Smart R M.The influence of soil salinity, growth form and leaf moisture on the spectral radiance of spartina alterniflora canopies[J].Photogrammetric Engineering and Remote Sensing,1983,49:77-84.

[19] Gao B C.NDWI:A normalized difference water index for remote sensing of vegetation liquid water from space[J].Remote Sensing of Environment,1996,58(3):257-266.

[1] CHEN Dong, YAO Weiling. Automatic numbering and method improvement of mine patches based on ArcPy and custom ArcToolbox[J]. Remote Sensing for Land & Resources, 2021, 33(2): 262-269.
[2] DIAO Mingguang, LIU Wenjing, LI Jing, LIU Fang, WANG Yanzuo. Dynamic change detection method of vector result data in mine remote sensing monitoring[J]. Remote Sensing for Land & Resources, 2020, 32(3): 240-246.
[3] WU Tong, PENG Ling, HU Yuan. Informal garbage dumps detection in high resolution remote sensing images based on SU-RetinaNet[J]. Remote Sensing for Land & Resources, 2020, 32(3): 90-97.
[4] WANG Jie, LIU Xiaoyang, YANG Jinzhong, ZHOU Yingjie, An Na, WANG Zhihui. Typical model analysis of mine geological environment restoration and management in Zhejiang Province based on domestic high-resolution satellite data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 216-221.
[5] Haigang SHI, Chunli LIANG, Jianyong ZHANG, Chunlei ZHANG, Xu CHENG. Remote sensing survey of the influence of coastline changes on the thermal discharge in the vicinity of Tianwan Nuclear Power Station[J]. Remote Sensing for Land & Resources, 2020, 32(2): 196-203.
[6] Xi LIU, Lina HAO, Xianhua YANG, Jie HUANG, Zhi ZHANG, Wunian YANG. Research and implementation of rapid statistical methods for mine remote sensing monitoring indicators[J]. Remote Sensing for Land & Resources, 2020, 32(2): 259-265.
[7] Jie WANG, Yaqiu YIN, Hang YU, Cunhao JIANG, Yu WAN. Remote sensing monitoring of mine geological environment in Zhejiang Province based on RS and GIS[J]. Remote Sensing for Land & Resources, 2020, 32(1): 232-236.
[8] Yuling ZHAO, Jinzhong YANG, Yaqiu YIN, Hang ZHAO, Jinbao HE, Han ZHANG. Research on remote sensing monitoring of zirconium-titanium sand mine exploitation and strategies of ecological restoration on the eastern beach of Hainan Island[J]. Remote Sensing for Land & Resources, 2019, 31(4): 143-150.
[9] Haiping WU, Shicun HUANG. Research on new construction land information extraction based on deep learning: Innovation exploration of the national project of land use monitoring via remote sensing[J]. Remote Sensing for Land & Resources, 2019, 31(4): 159-166.
[10] Zhen CHEN, Yunshi ZHANG, Yuanyu ZHANG, Lingling SANG. A study of remote sensing monitoring methods for the high standard farmland[J]. Remote Sensing for Land & Resources, 2019, 31(2): 125-130.
[11] Xianhua YANG, Jie HUANG, Li TIAN, Bei PENG, Lixiao XIAO, Xinlong SONG. Application of mine remote sensing monitoring to analysis of mine goaf stability[J]. Remote Sensing for Land & Resources, 2018, 30(3): 143-150.
[12] Chungui ZHANG, Bingqing LIN. Application of FY-2E data to remote sensing monitoring of sea fog in Fujian coastal region[J]. Remote Sensing for Land & Resources, 2018, 30(1): 7-7.
[13] XUE Qing, WU Wei, LI Mingsong, DONG Shuangfa, ZHANG Xinyi, SHI Haigang. Application of GF-1 satellite data to remote sensing monitoring of the mine[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 67-72.
[14] WANG Yijun, ZHAO Jun, WEI Wei, HAN Liqin. Remote sensing investigation and analysis of wetland in Gansu section of Heihe River Basin in the past 14 years[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 111-117.
[15] SONG Yang, FANG Shibo, LIANG Hanyue, KE Lina. Comparison and application of agricultural drought indexes based on MODIS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 215-220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech