Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (1) : 166-171     DOI: 10.6046/gtzyyg.2016.01.24
Technology Application |
Typical earthquake damage extraction and three-dimensional modeling analysis based on terrestrial laser scanning: A case study of Bailu middle school of Pengzhou city
JIAO Qisong1,2, ZHANG Jingfa2, JIANG Hongbo2, SU Yuanyuan2, WANG Xu2
1. Institute of Engineering Mechanics, CEA, Harbin 150080, China;
2. Institute of Crustal Dynamics, CEA, Beijing 100085, China
Download: PDF(11385 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Traditional optical and Radar remote sensing technology fails to acquire the building facade damage in the case of earthquake damage assessment. The capability of identifying the buildings whose structure has been destroyed and whose roof top is basically complete is poor. This reduces the assessment accuracy. However, terrestrial laser scanning could acquire the high precision 3D information of the damaged structure. Using RIEGL VZ-1000 laser scanner, the authors collected laser point clouds data of Bailu middle school on October 23, 2013. The point clouds were used to conduct 3D modeling and analysis through triangular irregular network modeling and texture mapping. On such a basis, a detailed modeling study was carried out on the typical architectural damage characteristics and surface rupture destruction. The authors achieved damaged buildings surface observation at any angle and quantitative measurement of the surface rupture through point clouds 3D modeling. The results truly reproduced the current scene of Bailu middle school after earthquake and permanently preserved the damage information. The results showed that the Qinxue building located on the hanging wall had no significant damage, whereas the Qiuzhi building located on the heading wall was seriously damaged. "X"-shaped conjugate shear fracture, structural column fracture, rebar exposure and other phenomena were widespread. The earthquake scarp settlement was small and the scarp elevation profile showed that the minimum and maximum height was 205cm and 231cm respectively. This was consistent with the GPS measurements.

Keywords road intersection      autoextraction      high resolution remote sensing image      mathematical morphology      multi-scale      angular texture signature      valley finding     
:  TP79  
Issue Date: 27 November 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAI Hongyue
YAO Guoqing
Cite this article:   
CAI Hongyue,YAO Guoqing. Typical earthquake damage extraction and three-dimensional modeling analysis based on terrestrial laser scanning: A case study of Bailu middle school of Pengzhou city[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 166-171.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2016.01.24     OR     https://www.gtzyyg.com/EN/Y2016/V28/I1/166

[1] 荆凤,申旭辉,洪顺英,等.遥感技术在地震科学研究中的应用[J].国土资源遥感,2008,20(2):5-8.doi:10.6046/gtzyyg.2008.02.02. Jing F,Shen X H,Hong S Y,et al.The application of remote sensing technology to earthquake science research[J].Remote Sensing for Land and Resources,2008,20(2):5-8.doi:10.6046/gtzyyg.2008.02.02.

[2] 王治华,周英杰,徐斌,等."5·12"汶川大地震震中区映秀镇地震灾情及次生地质灾害遥感初步调查[J].国土资源遥感,2008,20(2):1-4.doi:10.6046/gtzyyg.2008.02.01. Wang Z H,Zhou Y J,Xu B,et al.Preliminary remote sensing investigation of damage caused by the "5·12" Wenchuan strong earthquake as well as secondary hazards at the quake center-Yingxiu town[J].Remote Sensing for Land and Resources,2008,20(2):1-4.doi:10.6046/gtzyyg.2008.02.01.

[3] 郭兆成,童立强,郑雄伟,等.四川芦山地震次生地质灾害遥感调查及灾害特征初探[J].国土资源遥感,2014,26(3):99-105.doi:10.6046/gtzyyg.2014.03.16. Guo Z C,Tong L Q,Zheng X W,et al.Remote sensing survey of secondary geological disasters triggered by Lushan earthquake in Sichuan Province and tentative discussion on disaster characteristics[J].Remote Sensing for Land and Resources,2014,26(3):99-105.doi:10.6046/gtzyyg.2014.03.16.

[4] 于海洋,程钢,张育民,等.基于LiDAR和航空影像的地震灾害倒塌建筑物信息提取[J].国土资源遥感,2011,23(3):77-81.doi:10.6046/gtzyyg.2011.03.14. Yu H Y,Cheng G,Zhang Y M,et al.The detection of earthquake-caused collapsed building information from LiDAR data and aerophotograph[J].Remote Sensing for Land and Resources,2011,23(3):77-81.doi:10.6046/gtzyyg.2011.03.14.

[5] 魏永明,魏显虎,陈玉.岷江流域映秀——茂县段地震次生地质灾害分布规律及发展趋势分析[J].国土资源遥感,2014,26(4):179-186.doi:10.6046/gtzyyg.2014.04.28. Wei Y M,Wei X H,Chen Y.Analysis of distribution regularity and development tendency of earthquake secondary geohazards in Yingxiu-Maoxian section along the Minjiang River[J].Remote Sensing for Land and Resources,2014,26(4):179-186.doi:10.6046/gtzyyg.2014.04.28.

[6] 姚艳丽,蒋胜平,王红平.基于地面三维激光扫描仪的滑坡整体变形监测方法[J].测绘地理信息,2014,39(1):50-53,56. Yao Y L,Jiang S P,Wang H P.Overall deformation monitoring for landslide by using ground 3D laser scanner[J].Journal of Geomatics,2014,39(1):50-53,56.

[7] 袁小祥,王晓青,窦爱霞,等.基于地面LiDAR玉树地震地表破裂的三维建模分析[J].地震地质,2012,34(1):39-46. Yuan X X,Wang X Q,Dou A X,et al.Terrestrial LiDAR-based 3D modeling analysis of surface rupture caused by Yushu earthquake[J].Seismology and Geology,2012,34(1):39-46.

[8] 董秀军,黄润秋.三维激光扫描技术在高陡边坡地质调查中的应用[J].岩石力学与工程学报,2006,25(s2):3629-3635. Dong X J,Huang R Q.Application of 3D laser scanning technology to geologic survey of high and steep slope[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(s2):3629-3635.

[9] 梅文胜,周燕芳,周俊.基于地面三维激光扫描的精细地形测绘[J].测绘通报,2010(1):53-56. Mei W S,Zhou Y F,Zhou J.Fine topographic mapping based on ground three-dimensional laser scanning[J].Bulletin of Surveying and Mapping,2010(1):53-56.

[10] 孙柏涛,梅云弟.竖向变刚度约束砌体结构抗震能力研究[J].地震工程与工程振动,2012,32(2):1-13. Sun B T,Mei Y D.A study on the aseismic capacity of the confined masonry structure with variable vertical stiffness[J].Earthquake Engineering and Engineering Vibration,2012,32(2):1-13.

[11] 任俊杰,张世民,马保起,等.龙门山断裂带中北段大震复发特征与复发间隔估计[J].地震学报,2009,31(2):160-171. Ren J J,Zhang S M,Ma B Q,et al.Characteristics and recurrence intervals of large earthquakes along the middle-northern segment of the Longmenshan fault zone[J].Acta Seismologica Sinica,2009,31(2):160-171.

[12] 陈浩,李勇,董顺利,等.汶川8.0级地震地表破裂白鹿镇段的变形特征[J].自然杂志,2009,31(5):268-271. Chen H,Li Y,Dong S L,et al.Deformation features of surface rupture of the Wenchuan Earthquake(M8.0) at the Bailu Town[J].Chinese Journal of Nature,2009,31(5):268-271.

[13] 陈立春,冉勇康,陈杰,等.龙门山前山断裂大地震原地重复发生的地质地貌证据[J].第四纪研究,2009,29(3):472-483. Chen L C,Ran Y K,Chen J,et al.Geological and geomorphic evidence for repeatedly occurring severe earthquakes on fronter-range fault of Longmenshan,China[J].Quaternary Sciences,2009,29(3):472-483.

[14] 周强,孙柏涛.汶川地震中极震区砌体结构教学楼典型震害分析[J].震灾防御技术,2010,5(4):467-476. Zhou Q,Sun B T.Seismic damage analysis of typical masonry teaching buildings in meizoseismic area of Wenchuan earthquake[J].Technology for Earthquake Disaster Prevention,2010,5(4):467-476.

[15] 谢瑞,胡敏捷,程效军,等.三维激光HDS3000扫描仪点位精度分析与研究[J].遥感信息,2008(6):53-57,84. Xie R,Hu M J,Cheng X J,et al.Study on point precision of 3D laser scanning based on HDS3000[J].Remote Sensing Information,2008(6):53-57,84.

[1] WU Linlin, LI Xiaoyan, MAO Dehua, WANG Zongming. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 127-134.
[2] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[3] WEN Yintang, WANG Tiezhu, WANG Shutao, Wang Guichuan, LIU Shiyu, CUI Kai. Automatic extraction of mosaic lines from high-resolution remote sensing images based on multi-scale segmentation[J]. Remote Sensing for Natural Resources, 2021, 33(4): 64-71.
[4] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[5] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
[6] LIU Wanjun, GAO Jiankang, QU Haicheng, JIANG Wentao. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 97-106.
[7] HU Suliyang, LI Hui, GU Yansheng, HUANG Xianyu, ZHANG Zhiqi, WANG Yingchun. An analysis of land use changes and driving forces of Dajiuhu wetland in Shennongjia based on high resolution remote sensing images: Constraints from the multi-source and long-term remote sensing information[J]. Remote Sensing for Land & Resources, 2021, 33(1): 221-230.
[8] WU Tong, PENG Ling, HU Yuan. Informal garbage dumps detection in high resolution remote sensing images based on SU-RetinaNet[J]. Remote Sensing for Land & Resources, 2020, 32(3): 90-97.
[9] Chunsen ZHANG, Rongrong WU, Guojun LI, Weihong CUI, Chenyi FENG. High resolution remote sensing image object change detection based on box-plot method[J]. Remote Sensing for Land & Resources, 2020, 32(2): 19-25.
[10] Decai JIANG, Wenji LI, Jingmin LI, Zhaofeng BAI. Extraction of the forest fire region based on the span of ALOS PALSAR by object-oriented analysis[J]. Remote Sensing for Land & Resources, 2019, 31(4): 47-52.
[11] Yufeng LIU, Ying PAN, Hu LI. Study of crown information extraction of Picea schrenkiana var. tianschanicabased on high-resolution satellite remote sensing data[J]. Remote Sensing for Land & Resources, 2019, 31(4): 112-119.
[12] Dechao ZHAI, Yanan FAN, Yanan ZHOU. Multi-scale segmentation of satellite imagery by edge-incorporated weighted aggregation[J]. Remote Sensing for Land & Resources, 2019, 31(3): 36-42.
[13] Ning MAO, Huiping LIU, Xiangping LIU, Yanghua ZHANG. Optimal scale selection for multi-scale segmentation based on RMNE method[J]. Remote Sensing for Land & Resources, 2019, 31(2): 10-16.
[14] Qifang XIE, Guoqing YAO, Meng ZHANG. Research on high resolution image object detection technology based on Faster R-CNN[J]. Remote Sensing for Land & Resources, 2019, 31(2): 38-43.
[15] Liuqing WU, Xiangyun HU. Automatic building detection of high-resolution remote sensing images based on multi-scale and multi-feature[J]. Remote Sensing for Land & Resources, 2019, 31(1): 71-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech