Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (4) : 32-40     DOI: 10.6046/gtzyyg.2019.04.05
|
Geo-detector based spatio-temporal variation characteristics and driving factors analysis of NDVI in Central Asia
Wei WANG1,2,3, Samat Alim1,3, Abuduwaili Jilili1,2,3()
1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences,Urumqi 830011, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Research Center for Ecology and Environment of Central Asia, Chinese Academy of Science, Urumqi 830011, China
Download: PDF(5655 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Vegetation is an important nexus connecting atmosphere, pedosphere, hydrosphere and biosphere. Therefore, the relationship between the temporal and spatial variation characteristics of vegetation and its driving factors is of great significance in the study of regional ecological environment changes. Based on multiple data sets such as GIMMS NDVI and CRU, the authors analyzed the temporal and spatial variation characteristics of NDVI in Central Asia from 1991 to 2015, using trend analysis and geo-detector model that included factor detection, risk detection and interaction analysis. The results show that the vegetation activities in Central Asia have remained stable and volatile on the whole in the past 25 years. In detail, NDVI in the middle and low altitude areas of the Kazakh hills has increased significantly, while the NDVI in the southwestern part of Aral Sea has been significantly reduced because of the close diffusion of salt dust in the Aral Sea basin. In addition, because of the contradiction between water resources development and utilization among Central Asian countries, the trend of NDVI in the midstream of the Syr Darya and the downstream has been reversed. The non-irrigated farmland in northern Kazakhstan has a large decline in NDVI, and the results are not significant (P≥0.1) due to the phenomenon of re-cultivation. According to the results of geo-detector model, the water factor dominates the vegetation growth pattern in Central Asia, and the temperature is negatively correlated with the NDVI change. The difference in spatial and temporal variation of NDVI between different terrains, elevations, soil types and land use types is also significant. In terms of the interaction factor, the bi-factor interaction has enhanced the interpretation of spatial distribution and temporal and spatial variation of NDVI. The synergistic effect of potential evapotranspiration and elevation on the spatial distribution of NDVI is over 64%.

Keywords NDVI      Central Asia      geographical detector      trend analysis      temporal and spatial variation     
:  TP79  
Corresponding Authors: Abuduwaili Jilili     E-mail: jilil@ms.xjb.ac.cn
Issue Date: 03 December 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei WANG
Samat Alim
Abuduwaili Jilili
Cite this article:   
Wei WANG,Samat Alim,Abuduwaili Jilili. Geo-detector based spatio-temporal variation characteristics and driving factors analysis of NDVI in Central Asia[J]. Remote Sensing for Land & Resources, 2019, 31(4): 32-40.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.04.05     OR     https://www.gtzyyg.com/EN/Y2019/V31/I4/32
Fig.1  Map of research area
数据集 数据来源 时间分辨率 空间分辨率 数据预处理
NDVI数据集 NASA艾姆斯研究中心生态预测实验室发布的GIMMS NDVI 3g v1数据产品(1991—2015年) 15 d 8 km 最大化合成法合成逐年NDVI数据
气候数据集 英国东英吉利大学CRU小组发布的cru_ts_4.01(1991—2015年),数据包括: 气温(最高气温、最低气温、平均气温)、降水量、湿日频率、潜在蒸散发、云量和日较差 30 d 0.5°×0.5° 双线性内插法进行重采样,重采样后的空间分辨率为0.15°×0.15°
土壤类型数据集 FAO世界土壤数据库的土壤类型数据 1 km 按照FAO90标准对土壤类型进行重分类,共分为13类
土壤湿度数据集 欧洲中期天气预报中心表层土壤湿度再分析数据 30 d 0.25°×0.25° 双线性内插法进行重采样,重采样后的空间分辨率为0.15°×0.15°
土地覆被数据集 欧空局的ESA_CCI的土地覆被数据(1991—2015年) 1 a 300 m 对土地覆被类型重分类为8类
高程数据 NASA的STRM(shuttle Radar topographic mission)数字高程数据 90 m
Tab.1  Data source and data preprocessing
NDVI变化
趋势类型
S 显著性P F
极显著增加 (0, +∞) (-∞, 0.001) (14.19, +∞)
显著增加 (0, +∞) (0.001, 0.1) (2.937, 14.19)
变化不显著 (-∞, +∞) (0.1, +∞) (-∞, 2.937)
显著减少 (-∞, 0) (0.001, 0.1) (2.937, 14.19)
极显著减少 (-∞, 0) (-∞, 0.001) (14.19, +∞)
Tab.2  Types of NDVI change trend
交互作用类型 q值比较
非线性减弱 q(X1∩X2)< Min(q(X1),q(X2))
单因子非线性减弱 Min(q(X1),q(X2))< q(X1∩X2)< Max(q(X1),q(X2))
双因子增强 q(X1∩X2)> Max(q(X1),q(X2))
独立 q(X1∩X2)=q(X1)+q(X2)
非线性增强 q(X1∩X2)>q(X1)+q(X2)
Tab.3  Types of two-factor interaction result
Fig.2  Spatial distribution of NDVI, NDVI changes, land cover types and soil types
Fig.3  Changes of NDVI values corresponding to different terrain areas and land cover types
Fig.4  Change trend of NDVI in Central Asia during the period from 1991 to 2015
因子 NDVI空间分布的影响因素 NDVI变化趋势的影响因素
q P值(sig) q值排序 q P值(sig) q值排序
地形区/土地覆被类型 0.340 397 4.03E-10 9 0.048 216 1.63E-10 7
土壤类型 0.468 032 5.84E-10 4 0.047 821 8.94E-10 8
土壤湿度 0.533 063 5.98E-10 1 0.018 531 6.19E-10 11
高程 0.155 681 6.09E-10 11 0.090 486 4.99E-11 3
湿日频率 0.518 121 6.22E-10 2 0.023 415 8.65E-11 10
最高气温 0.448 316 6.44E-10 6 0.072 058 2.83E-10 6
平均气温 0.427 333 3.81E-10 7 0.042 872 4.35E-10 9
最低气温 0.408 399 7.58E-10 8 0.011 680 3.79E-10 12
降水量 0.491 198 2.46E-10 3 0.096 278 2.94E-10 2
潜在蒸散发 0.464 430 3.54E-10 5 0.109 109 4.30E-10 1
云量 0.335 372 9.72E-10 10 0.079 239 7.20E-11 5
日较差 0.101 138 3.19E-10 12 0.086 714 5.08E-11 4
Tab.4  Results of factor detector
Fig.5  Results of risk detector and interaction detector
[1] Chen F H, Wang J S, Jin L Y , et al. Rapid warming in mid-latitude Central Asia for the past 100 years[J]. Frontiers of Earth Science in China, 2009,3(1):42-50.
[2] 秦大河 . 气候变化科学概论[M]. 北京: 科学出版社, 2018: 35-38.
[2] Qin D H. Introduction to Climate Change Science[M]. Beijing: Science Press, 2018: 35-38.
[3] Klein I, Gessner U, Kuenzer C . Regional land cover mapping and change detection in Central Asia using MODIS time-series[J]. Applied Geography, 2012,35(1-2):219-234.
[4] Micklin P .The future Aral Sea:Hope and despair[J].Environmental Earth Sciences, 2016, 75(9): 844, 1-15.
[5] Bezborodov G A, Shadmanov D K, Mirhashimov R T , et al. Mulching and water quality effects on soil salinity and sodicity dynamics and cotton productivity in Central Asia[J]. Agriculture Ecosystems and Environment, 2010,138(1):95-102.
[6] 程彦培, 张发旺, 董华 , 等. 基于MODIS卫星数据的中亚地区水体动态监测研究[J]. 水文地质工程地质, 2010,37(5):33-37.
doi: 10.3969/j.issn.1000-3665.2010.05.006 url: http://d.wanfangdata.com.cn/Periodical/swdzgcdz201005006
[6] Cheng Y P, Zhang F W, Dong H , et al. Wetland dynamic monitoring in Central Asia based on MODIS image[J]. Hydrogeology and Engineering Geology, 2010,37(5):33-37.
[7] 成晨, 傅文学, 胡召玲 , 等. 基于遥感技术的近30年中亚地区主要湖泊变化[J]. 国土资源遥感, 2015,27(1):146-152.doi: 10.6046/gtzyyg.2015.01.23.
doi: 10.6046/gtzyyg.2015.01.23
[7] Cheng C, Fu W X, Hu Z L , et al. Changes of major lakes in Central Asia over the past 30 years revealed by remote sensing technology[J]. Remote Sensing for Land and Resources, 2015,27(1):146-152.doi: 10.6046/gtzyyg.2015.01.23.
[8] Schwartz M D . Green-wave phenology[J]. Nature, 1998,394(6696):839-840.
[9] 殷刚, 孟现勇, 王浩 , 等. 1982—2012年中亚地区植被时空变化特征及其与气候变化的相关分析[J]. 生态学报, 2017,37(9):3149-3163.
doi: 10.5846/stxb201601240164
[9] Yin G, Meng X Y, Wang H , et al. Spatial-temporal variation of vegetation and its correlation with climate change in Central Asia during the period of 1982—2012[J]. Acta Ecologica Sinica, 2017,37(9):3149-3163.
[10] 邓兴耀, 姚俊强, 刘志辉 . 基于GIMMS NDVI的中亚干旱区植被覆盖时空变化[J]. 干旱区研究, 2017,34(1):10-19.
[10] Deng X Y, Yao J Q, Liu Z H . Spatiotemporal dynamic change of vegetation coverage in arid regions in Central Asia based on GIMMS NDVI[J]. Arid Zone Research, 2017,34(1):10-19.
[11] 索玉霞, 王正兴, 刘闯 , 等. 中亚地区1982年至2002年植被指数与气温和降水的相关性分析[J]. 资源科学, 2009,31(8):1422-1429.
url: http://d.wanfangdata.com.cn/Periodical/zykx200908023
[11] Suo Y X, Wang Z X, Liu C , et al. Relationship between NDVI and precipitation and temperature in Middle Asia during 1982—2002[J]. Resources Science, 2009,31(8):1422-1429.
[12] 张琪, 袁秀亮, 陈曦 , 等. 1982—2012年中亚植被变化及其对气候变化的响应[J]. 植物生态学报, 2016,40(1):13-23.
doi: 10.17521/cjpe.2015.0236
[12] Zhang Q, Yuan X L, Chen X , et al. Vegetation change and its response to climate change in Central Asia from 1982 to 2012[J]. Chinese Journal of Plant Ecology, 2016,40(1):13-23.
[13] 索玉霞 . 中亚五国植被覆盖变化与气候因子相关性分析[D]. 北京:中国科学院研究生院, 2009.
[13] Suo Y X . Correlation of Vegetation Dynamics and Climate Variability in the Middle Asia[D]. Beijing:Graduate School of Chinese Academy of Science, 2009.
[14] Shigaeva J, Kollmair M, Niederer P , et al. Livelihoods in transition:Changing land use strategies and ecological implications in a post-Soviet setting (Kyrgyzstan)[J]. Central Asian Survey, 2007,26(3):389-406.
[15] 王劲峰, 徐成东 . 地理探测器:原理与展望[J]. 地理学报, 2017,72(1):116-134.
doi: 10.11821/dlxb201701010
[15] Wang J F, Xu C D . Geodetector:Principle and prospective[J]. Acta Geographica Sinica, 2017,72(1):116-134.
[16] 胡汝骥, 姜逢清, 王亚俊, 等 .中亚(五国) 干旱生态地理环境特征[J]. 干旱区研究, 2014,31(1):1-12.
[16] Hu R J, Jiang F Q, Wang Y J , et al. Arid ecological and geographical conditions in five countries of Central Asia[J]. Arid Zone Research, 2014,31(1):1-12.
[17] 吉力力·阿不都外力, 马龙 . 中亚环境概论[M]. 北京: 气象出版社, 2015: 275-293.
[17] Abuduwaili J, Ma L. Overview of Central Asian Environments[M]. Beijing: China Meteorological Press, 2015: 275-293.
[18] 刘宪锋, 朱秀芳, 潘耀忠 , 等. 1982—2012年中国植被覆盖时空变化特征[J]. 生态学报, 2015,35(16):5331-5342.
doi: 10.5846/stxb201404150731
[18] Liu X F, Zhu X F, Pan Y Z , et al. Spatiotemporal changes in vegetation coverage in China during 1982—2012[J]. Acta Ecologica Sinica, 2015,35(16):5331-5342.
[19] 刘家福, 马帅, 李帅 , 等. 1982—2016年东北黑土区植被NDVI动态及其对气候变化的响应[J]. 生态学报, 2018,38(21):7647-7657.
doi: 10.5846/stxb201712112226
[19] Liu J F, Ma S, Li S , et al. Changes in vegetation NDVI from 1982 to 2016 and its responses to climate change in the black-soil area of Northeast China[J]. Acta Ecologica Sinica, 2018,38(21):7647-7657.
[20] 穆少杰, 李建龙, 周伟 , 等. 2001—2010年内蒙古植被净初级生产力的时空格局及其与气候的关系[J]. 生态学报, 2013,33(12):3752-3764.
doi: 10.5846/stxb201205030638
[20] Mu S J, Li J L, Zhou W , et al. Spatial-temporal distribution of net primary productivity and its relationship with climate factors in Inner Mongolia from 2001 to 2010[J]. Acta Ecologica Sinica, 2013,33(12):3752-3764.
[21] 赵宁, 马超, 杨亚莉 . 1973—2013年红碱淖水域水质变化及驱动力分析[J]. 湖泊科学, 2016,28(5):982-993.
[21] Zhao N, Ma C, Yang Y L . Water quality variation of Lake Hongjiannao and its driving force analysis from 1973 to 2013[J]. Journal of Lake Sciences, 2016,28(5):982-993.
[22] Dara A, Baumann M, Kuemmerle T , et al. Mapping the timing of cropland abandonment and recultivation in northern Kazakhstan using annual Landsat time series[J]. Remote Sensing of Environment, 2018,213:49-60.
[23] Shen H, Abuduwaili J, Samat A , et al.A review on the research of modern aeolian dust in Central Asia[J].Arabian Journal of Geosciences, 2016, 9(13): 625, 1-16.
[24] Ge Y X, Abuduwaili J, Ma L, et al.Temporal variability and potential diffusion characteristics of dust aerosol originating from the Aral Sea Basin, Central Asia[J].Water Air and Soil Pollution , 2016, 227(2): 63, 1-12.
[25] 吴淼, 张小云, 罗格平 , 等. 哈萨克斯坦水资源利用[J]. 干旱区地理, 2010,33(2):196-202.
[25] Wu M, Zhang X Y, Luo G P , et al. Situation of water resources utilization in Kazakhstan[J]. Arid Land Geography, 2010,33(2):196-202.
[1] SHI Feifei, GAO Xiaohong, XIAO Jianshe, LI Hongda, LI Runxiang, ZHANG Hao. Classification of wolfberry planting areas based on ensemble learning and multi-temporal remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(1): 115-126.
[2] QIN Dahui, YANG Ling, CHEN Lunchao, DUAN Yunfei, JIA Hongliang, LI Zhenpei, MA Jianqin. A study on the characteristics and model of drought in Xinjiang based on multi-source data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 151-157.
[3] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[4] JIN Chengming, YANG Xingwang, JING Haitao. A RS-based study on changes in fractional vegetation cover in North Shaanxi and their driving factors[J]. Remote Sensing for Natural Resources, 2021, 33(4): 258-264.
[5] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[6] DU Fangzhou, SHI Yuli, SHENG Xia. Research on downscaling of TRMM precipitation products based on deep learning: Exemplified by northeast China[J]. Remote Sensing for Land & Resources, 2020, 32(4): 145-153.
[7] Biqing WANG, Wenquan HAN, Chi XU. Winter wheat planting area identification and extraction based on image segmentation and NDVI time series curve classification model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 219-225.
[8] Guoce SONG, Zhi ZHANG. Remote sensing monitoring method for dust and wind accumulation in multi-metal mining area of Xin Barag Right Banner,Inner Mongolia[J]. Remote Sensing for Land & Resources, 2020, 32(2): 46-53.
[9] Linyan FENG, Bingxiang TAN, Xiaohui WANG, Xinyun CHEN, Weisheng ZENG, Zhao QI. Object-oriented rapid forest change detection based on distribution function[J]. Remote Sensing for Land & Resources, 2020, 32(2): 73-80.
[10] Jiaxin XU, Shibo FANG, Tingbin ZHANG, Yongchao ZHU, Dong WU, Guihua YI. NDVI changes and its correlation with climate factors of the Three River-Headwater region in growing seasons during 2000—2016[J]. Remote Sensing for Land & Resources, 2020, 32(1): 237-246.
[11] Dongya CHENG, Xudong LI. Comparison of change characteristics of NDVI in mountain basin before and after atmospheric correction[J]. Remote Sensing for Land & Resources, 2020, 32(1): 90-97.
[12] Xianhua YANG, Xiao XU, Lixiao XIAO, Li TIAN, Lina HAO, Peng XU. Evolution trend and driving force analysis of the Chaerhan Salt Lake[J]. Remote Sensing for Land & Resources, 2020, 32(1): 130-137.
[13] Chao MA, Panli CAI. Spatio-temporal changes and driving factors of environmental and ecological index in Culai-Lianhua area[J]. Remote Sensing for Land & Resources, 2019, 31(4): 199-208.
[14] Liang TANG, Zhongming ZHAO, Ping TANG. A new method for detection “greening” or “browning” change trend in vegetation from NDVI sequences[J]. Remote Sensing for Land & Resources, 2019, 31(2): 89-95.
[15] Junnan XIONG, Wei LI, Weiming CHENG, Chunkun FAN, Jin LI, Yunliang ZHAO. Spatial variability and influencing factors of LST in plateau area: Exemplified by Sangzhuzi District[J]. Remote Sensing for Land & Resources, 2019, 31(2): 164-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech