Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (2) : 144-151     DOI: 10.6046/gtzyyg.2017.02.21
Contents |
Monitoring and analyzing large scale land subsidence over the mining area using small baseline subset InSAR
LIU Yilin1, 2, 3, ZHANG Qin2, HUANG Haijun1, 3, YANG Chengsheng2, ZHAO Chaoying2
1. Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071,China;
2. College of Geology Engineering and Geomatics, Chang’an University, Xi’an 710054, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(1087 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Due to large scale earth surface deformation, the application of conventional InSAR technique to monitor land subsidence over the mining area has many limitations, such as low image co-registration accuracy and monitoring capability, small detection scale and unavailable complete mining subsidence information. In view of such a situation, the small baseline subset (SBAS) InSAR technique combined with offset tracking method, fast fourier transformation oversampling technique, filter technique and baseline refine method was studied in this paper to overcome the limitations. On such a basis, the co-registration accuracy, monitoring capability and the accumulative detection scale could be improved considerably. Meanwhile, the complete large scale time series deformation over the mining area from 2008 to 2011 was generated, which is well consistent with field and mining processing data. Furthermore, spatial and temporal evolution law of earth surface over the mining area was obtained by analyzing the cross-section time series deformation.
Keywords basalt      geochemical compositions      inversion      field measured spectra      partial least squares regression(PLSR)      Liuyuan     
Issue Date: 03 May 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Junchuan
LIU Wenliang
YAN Bokun
DONG Xinfeng
WANG Zhe
LI Na
Cite this article:   
YU Junchuan,LIU Wenliang,YAN Bokun, et al. Monitoring and analyzing large scale land subsidence over the mining area using small baseline subset InSAR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 144-151.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2017.02.21     OR     https://www.gtzyyg.com/EN/Y2017/V29/I2/144
[1] 何国清,杨 伦,凌赓娣,等.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1991.
He G Q,Yang L,Ling G D,et al.Mining Subsidence[M].Xuzhou:China University of Mining and Technology Press,1991.
[2] 刘宝琛,廖国华.煤矿地表移动的基本规律[M].北京:中国工业出版社,1965.
Liu B C,Liao G H.Basic Rule of Coal Surface Movement[M].Beijing:China Industry Press,1965.
[3] 吴立新,高均海,葛大庆,等.基于D-InSAR的煤矿区开采沉陷遥感监测技术分析[J].地理与地理信息科学,2004,20(2):22-25,37.
Wu L X,Gao J H,Ge D Q,et al.Technical analysis of the remote sensing monitoring for coal-mining subsidence based on D-InSAR[J].Geography and Geo-Information Science,2004,20(2):22-25,37.
[4] 吴立新,高均海,葛大庆,等.工矿区地表沉陷D-InSAR监测试验研究[J].东北大学学报:自然科学版,2005,26(8):778-782.
Wu L X,Gao J H,Ge D Q,et al.Experimental study on surface subsidence monitoring with D-InSAR in mining area[J].Journal of Northeastern University:Natural Science,2005,26(8):778-782.
[5] 杨成生.基于D-InSAR技术的煤矿沉陷监测[D].西安:长安大学,2008.
Yang C S.Based on D-InSAR Technology in Coal Mine Subsidence Monitoring[D].Xi’an:Chang’an University,2008.
[6] 朱建军,邢学敏,胡 俊,等.利用InSAR技术监测矿区地表形变[J].中国有色金属学报,2011,21(10):2564-2576.
Zhu J J,Xing X M,Hu J,et al.Monitoring of ground surface deformation in mining area with InSAR technique[J].The Chinese Journal of Nonferrous Metals,2011,21(10):2564-2576.
[7] Ge L L,Chang H C,Rizos C.Mine subsidence monitoring using multi-source satellite SAR images[J].Photogrammetric Engineering & Remote Sensing,2007,73(3):259-266.
[8] Ng A H M,Ge L L,Yan Y G,et al.Mapping accumulated mine subsidence using small stack of SAR differential interferograms in the Southern coalfield of New South Wales, Australia[J].Engineering Geology,2010,115(1/2):1-15.
[9] 刘一霖.矿区开采沉陷大量级形变监测与反演分析[D].西安:长安大学,2013.
Liu Y L.The Monitoring and Inverse of Large Scale Deformation of Minging Subsidence[D].Xi’an:Chang’an University,2013.
[10] Werner C,Wegmüller U,Strozzi T,et al.Gamma SAR and interferometric processing software[C]//Proceedings of the ERS-ENVISAT Symposium.Gothenburg,Sweden:[s.n.],2000.
[11] Berardino P,Fornaro G,Lanari R,et al.A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375-2383.
[12] Lanari R,Mora O,Manunta M,et al.A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(7):1377-1386.
[13] Lanari R,Casu F,Manzo M,et al.An overview of the small baseline subset algorithm:A DInSAR technique for surface deformation analysis[J].Pure and Applied Geophysics,2007,164(4):637-661.
[14] 廖明生,林 珲.雷达干涉测量:原理与信号处理基础[M].北京:测绘出版社,2003:45-52.
Liao M S,Lin H.Synthetic Aperture Radar Interferometry-Principle and Signal Processing[M].Beijing:Surveying and Mapping Press,2003:45-52.
[15] Strozzi T,Luckman A,Murray T,et al.Glacier motion estimation using SAR offset-tracking procedures[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2384-2391.
[16] Strozzi T,Kouraev A,Wiesmann A,et al.Estimation of Arctic glacier motion with satellite L-band SAR data[J].Remote Sensing of Environment,2008,112(3):636-645.
[17] Werner C,Strozzi T,Wiesmann A,et al.Complimentary measurement of geophysical deformation using repeat-pass SAR[C]//Proceedings of 2001 IEEE International Geoscience and Remote Sensing Symposium.Sydney,NSW:IEEE,2001,7:3255-3258.
[18] Werner C,Wegmüller U,Strozzi T,et al.Precision estimation of local offsets between pairs of SAR SLCs and detected SAR images[C]//Proceedings of 2005 IEEE International Geoscience and Remote Sensing Symposium.Seoul:IEEE,2005:4803-4805.
[19] Wegmüller U,Werner C,Strozzi T,et al.Automated and precise image registration procedures[J].Analysis of Multi-temporal Remote Sensing Images,2002,2:37-49.
[20] Wegmüller U,Werner C,Strozzi T,et al.Ionospheric electron concentration effects on SAR and INSAR[C]//Proceedings of 2006 IEEE International Conference on Geoscience and Remote Sensing Symposium.Denver,CO,USA:IEEE,2006:3731-3734.
[21] Chen C W,Zebker H A.Phase unwrapping for large SAR interferograms:Statistical segmentation and generalized network models[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(8):1709-1719.
[22] Lu Z,Wicks Jr C.Characterizing 6 August 2007 crandall canyon mine collapse from ALOS PALSAR InSAR[J].Geomatics,Natural Hazards and Risk,2010,1(1):85-93.
[1] SUN Yiming, ZHANG Baogang, WU Qizhong, LIU Aobo, GAO Chao, NIU Jing, HE Ping. Application of domestic low-cost micro-satellite images in urban bare land identification[J]. Remote Sensing for Natural Resources, 2022, 34(1): 189-197.
[2] SHA Yonglian, WANG Xiaowen, LIU Guoxiang, ZHANG Rui, ZHANG Bo. SBAS-InSAR-based monitoring and inversion of surface subsidence of the Shadunzi Coal Mine in Hami City, Xinjiang[J]. Remote Sensing for Natural Resources, 2021, 33(3): 194-201.
[3] DU Cheng, LI Delin, LI Genjun, YANG Xuesong. Application and exploration of dissolved oxygen inversion of plateau salt lakes based on spectral characteristics[J]. Remote Sensing for Natural Resources, 2021, 33(3): 246-252.
[4] Zhenyu MA, Bowei CHEN, Yong PANG, Shengxi LIAO, Xianlin QIN, Huaiqing ZHANG. Forest fire potential forecast based on FCCS model[J]. Remote Sensing for Land & Resources, 2020, 32(1): 43-50.
[5] Chong YANG, Guoxiang LIU, Bing YU, Bo ZHANG, Rui ZHANG, Xiaowen WANG. Inversion of reservoir parameters in Shuguang Oil Production Plant of the Liaohe Oilfield based on InSAR deformation[J]. Remote Sensing for Land & Resources, 2020, 32(1): 209-215.
[6] Honge FENG, Jiaguo LI, Yunfang ZHU, Qijin HAN, Ning ZHANG, Shufang TIAN. Synergistic inversion method of chlorophyll a concentration in GF-1 and Landsat8 imagery: A case study of the Taihu Lake[J]. Remote Sensing for Land & Resources, 2019, 31(4): 182-189.
[7] Jun LI, Heng DONG, Xiang WANG, Lin YOU. Reconstructing missing data in soil moisture content derived from remote sensing based on optimum interpolation[J]. Remote Sensing for Land & Resources, 2018, 30(2): 45-52.
[8] Kun LU, Qingyan MENG, Yunxiao SUN, Zhenhui SUN, Linlin ZHANG. Estimating leaf area index of wheat at the booting stage using GF-2 data: A case study of Langfang City,Hebei Province[J]. Remote Sensing for Land & Resources, 2018, 30(1): 196-202.
[9] MA Huiyun, ZHAO Guoqing, ZOU Zhengrong, ZHANG Weikang. Verification of the retrieval algorithm and analysis of influencing factors of fog physical parameters based on MODIS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 122-128.
[10] XU Ao, MA Baodong, LI Xingchun, WU Lixin. Spectral testing and quantitative inversion for dust of iron tailings on leaf[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 164-169.
[11] YU Junchuan, LIU Wenliang, YAN Bokun, DONG Xinfeng, WANG Zhe, LI Na. Inversion of geochemical compositions of basalts based on field measured spectra[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 158-163.
[12] HAN Liang, DAI Xiaoai, SHAO Huaiyong, WANG Hongyan. An improved method for atmospheric transmissivity inversion based on field atmospheric modes[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 88-92.
[13] CAO Yongxing, XUE Zhihang. Review of the urban aerosol retrieval research based on high-resolution images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 1-6.
[14] CHEN Danlei, LIU Guoxiang, WANG Xiaowen, WANG Lei, PU Huilong. Inversion of fault slip parameters based on DInSAR and automated fault model discretization method[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 25-30.
[15] ZHANG Qi, LIU Fujiang, LI Chan, QIAO Le, GUO Zhenhui, CHAI Chunpeng. Fully constrained linear-unmixing for inversion of lunar mineral abundance in Sinus Iridum[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 7-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech