Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (1) : 196-202     DOI: 10.6046/gtzyyg.2018.01.27
Orginal Article |
Estimating leaf area index of wheat at the booting stage using GF-2 data: A case study of Langfang City,Hebei Province
Kun LU1(), Qingyan MENG2(), Yunxiao SUN2,3, Zhenhui SUN2,3, Linlin ZHANG2,3
1.Geotramics College,Shandong University of Science and Technology,Qingdao 266590,China
2.Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100101,China
3.University of Chinese Academy of Sciences,Beijing 100049,China
Download: PDF(968 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Leaf area index (LAI) is an important agricultural parameter to assess crop growing status for production estimation. Due to its very high spatial resolution, GF-2 can be used as a new source of remote sensing data for crop monitoring. It is particularly valuable to develop approaches for LAI estimation using GF-2 data. In this paper, the study of LAI estimation for wheat at the booting stage in Wanzhuang Town, Langfang City of Hebei Province in North China Plain is presented. Canopy LAI of wheat at the booting stage was measured over an experimental field in the town. Regression analysis method was performed with LAI and four different vegetation indexes, and the neural network method combined with the PROSAIL model was also considered. The results show that the best LAI retrieval regression model is the binomial model of normalized difference vegetation index (NDVI). The correlation coefficient (R2) and root mean square error (RMSE) are 0.719 3 and 0.393 6 respectively. Compared with the regression analysis method, the accuracy is greatly improved by using neural network method,and the R2 and RMSE reached 0.900 8 and 0.273 2 respectively. Neural network method has feasibility and applicability based GF-2 data at wheat booting stage, which would provide a reference scheme for LAI inversion from high spatial resolution satellite image.

Keywords vegetation index      neural network      leaf area index(LAI)      inversion method      precision validation     
:  TP79  
Issue Date: 08 February 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kun LU
Qingyan MENG
Yunxiao SUN
Zhenhui SUN
Linlin ZHANG
Cite this article:   
Kun LU,Qingyan MENG,Yunxiao SUN, et al. Estimating leaf area index of wheat at the booting stage using GF-2 data: A case study of Langfang City,Hebei Province[J]. Remote Sensing for Land & Resources, 2018, 30(1): 196-202.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.01.27     OR     https://www.gtzyyg.com/EN/Y2018/V30/I1/196
波段号 光谱
波段
波段范
围/μm
空间分
辨率/m
幅宽/km 侧摆能
力/(°)
重访时
间/d
1 0.45~0.52 4 45 ±35 5
2 绿 0.52~0.59 4 45 ±35 5
3 0.63~0.69 4 45 ±35 5
4 近红外 0.77~0.89 4 45 ±35 5
5 全色 0.45~0.90 1 45 ±35 5
Tab.1  Band setting of GF-2
Fig.1  Spectral curves of vegetation reflectivity after FLAASH atmospheric correction
植被指数类型 计算公式
NDVI[16] NDVI=ρnir-ρredρnir+ρred
比值植被指数[17] RVI=ρnirρred
土壤调节植被指数[18] SAVI=ρnir-ρredρnir+ρred+L(L+1)
EVI219 EVI2=2.5ρnir-ρred(ρnir+2.4ρred)+1
Tab.2  Vegetation indexes used in this paper
Fig.2  Sketch map for structure of BP-ANN
Fig.3  VI-LAI regression fitting
植被指数
回归模型
拟合方程 R2 RMSE
NDVI-LAI y = 11.312 x - 2.495 9 0.700 1 0.348 7
y = 0.251 1 e5.123x 0.705 8 0.335 3
y = 4.615 5 ln x + 6.287 0.683 7 0.358 2
y = 30.586 x2-14.286 x+2.786 8 0.718 5 0.337 9
RVI-LAI y=1.560 8 x - 1.649 0.641 5 0.381 3
y =0.374 1 e0.700 5x 0.635 2 0.368 8
y =3.719 9 ln x - 1.127 2 0.615 3 0.395 0
y=0.664 3 x2-1.742 6 x+2.380 7 0.664 9 0.368 6
SAVI-LAI y =5.918 6 x - 1.513 0.601 8 0.545 5
y =0.383 5 e2.716 4x 0.623 2 0.382 5
y =3.400 5 ln x + 3.807 7 0.561 1 0.421 9
y =15.543 x2-13.027 x+4.155 4 0.656 9 0.373 0
EVI2-LAI y =4.219 2 x-0.946 3 0.615 0 0.395 2
y =0.501 7 e1.924 6x 0.629 0 0.375 9
y =2.867 3 ln x+3.07 0.569 8 0.417 7
y =6.989 9 x2-5.985 1 x+2.681 3 0.659 2 0.371 8
Tab.3  Regression models establishment
Fig.4  Flow chart of BP-ANN model

神经网络预测LAI 实测LAI
预测1 预测2 预测3 预测4 预测5
1 2.573 5 2.868 5 2.255 5 2.548 0 2.487 7 2.282 5
2 3.308 5 3.059 1 3.188 7 3.154 6 3.431 2 3.113 0
3 2.539 3 2.300 0 2.199 3 2.446 2 2.475 5 2.203 0
4 3.135 2 3.039 3 3.018 5 3.172 5 3.622 1 3.374 0
5 2.099 2 2.193 6 2.023 2 2.059 5 2.294 4 1.792 0
6 1.984 0 1.833 9 1.806 7 1.843 0 1.642 2 1.731 0
7 1.950 3 1.598 4 1.903 0 1.764 2 1.767 6 1.626 0
8 2.789 2 2.987 8 2.366 6 2.561 2 2.644 0 2.619 0
9 1.576 6 1.507 2 1.528 5 1.705 6 1.405 1 1.180 0
10 2.320 6 2.482 1 2.206 5 2.118 3 2.010 8 2.334 0
11 2.768 0 2.990 0 2.708 2 2.530 8 2.660 3 3.109 0
Tab.4  Results of neural network test
Fig.5  Comparison of LAI inversion results
Fig.6  Verification of LAI inversion results
[1] Chen J M,Cihlar J.Retrieving leaf area index of boreal conifer forests using Landsat TM images[J].Remote Sensing of Environment,1996,55(2):153-162.
[2] Pinty B,Lavergne T,Widlowski J L,et al.On the need to observe vegetation canopies in the near-infrared to estimate visible light absorption[J].Remote Sensing of Environment,2009,113(1):10-23.
[3] 李鑫川,徐新刚,鲍艳松,等.基于分段方式选择敏感植被指数的冬小麦叶面积指数遥感反演[J].中国农业科学,2012,45(17):3486-3496.
[3] Li X C,Xu X G,Bao Y S,et al.Retrieving LAI of winter wheat based on sensitive vegetation index by the segmentation method[J].Scientia Agricultura Sinica,2012,45(17):3486-3496.
[4] Yang F,Sun J L,Fang H L,et al.Comparison of different methods for corn LAI estimation over northeastern China[J].International Journal of Applied Earth Observation and Geoinformation,2012,18:462-471.
[5] 任哲,陈怀亮,王连喜,等.利用交叉验证的小麦LAI反演模型研究[J].国土资源遥感,2015,27(4):34-40.doi:10.6046/gtzyyg.2015.04.06.
[5] Ren Z,Chen H L,Wang L X,et al.Research on inversion model of wheat LAI using cross-validation[J].Remote Sensing for Land and Resources,2015,27(4):34-40.doi:10.6046/gtzyyg.2015.04.06.
[6] Meng Q Y,Wang C M,Gu X F,et al.Hot dark spot index method based on multi-angular remote sensing for leaf area index retrieval[J].Environmental Earth Sciences,2016,75:732.
[7] 张瀛,孟庆岩,武佳丽,等.基于环境星CCD数据的环境植被指数及叶面积指数反演研究[J].光谱学与光谱分析,2011,31(10):2789-2793.
[7] Zhang Y,Meng Q Y,Wu J L,et al.Study of environmental vegetation index based on environment satellite CCD data and LAI inversion[J].Spectroscopy and Spectral Analysis,2011,31(10):2789-2793.
[8] 赵娟. 基于多时相多角度遥感数据的植被叶面积指数反演[D].南京:南京信息工程大学,2014.
[8] Zhao J.Study of Leaf Area Index Inversion Based on Multi-Temporal and Multi-angular Remote Sensing Data[D].Nanjing:Nanjing University of Science and Technology,2014.
[9] Kokaly R F,Clark R N.Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression[J].Remote Sensing of Environment,1999,67(3):267-287.
[10] 宋开山,张伯,王宗明,等.基于人工神经网络的大豆叶面积高光谱反演研究[J].中国农业科学,2006,39(6):1138-1145.
[10] Song K S,Zhang B,Wang Z M,et al.Soybean LAI estimation with in-situ collected hyperspectral data based on BP-neural networks[J].Scientia Agricultura Sinica,2006,39(6):1138-1145.
[11] 陈健,倪绍祥,李云梅.基于神经网络方法的芦苇叶面积指数遥感反演[J].国土资源遥感,2008,20(2):62-67.doi:10.6046/gtzyyg.2008.02.15.
[11] Chen J,Ni S X,Li Y M.LAI retrieval of reed canopy using the neural network method[J].Remote Sensing for Land and Resources,2008,20(2):62-67.doi:10.6046/gtzyyg.2008.02.15.
[12] 包刚,覃志豪,周义,等.基于高光谱数据和RBF神经网络方法的草地叶面积指数反演[J].国土资源遥感,2012,24(2):7-11.doi:10.6046/gtzyyg.2012.02.02.
[12] Bao G,Qin Z H,Zhou Y,et al.The application of hyper-spectral data and RBF neural network method to retrieval of leaf area index of grassland[J].Remote Sensing for Land and Resources,2012,24(2):7-11.doi:10.6046/gtzyyg.2012.02.02.
[13] Adler-Golden S M,Matthew M W,Bernstein L S,et al.Atmospheric correction for shortwave spectral imagery based on MODTRAN4[C]//Proceeding of the SPIE 3753,Imaging Spectrometry V.Denver,CO,United States:SPIE,1999,3753:61-69.
[14] 郝建亭,杨武年,李玉霞,等.基于FLAASH的多光谱影像大气校正应用研究[J]. 遥感信息, 2008(1):78-81.
[14] Hao J T,Yang W N,Li Y X,et al.Atmospheric correction of multi-spectral imagery ASTER[J]. Remote Sensing Information, 2008(1):78-81.
[15] Gonsamo A,Pellikka P.The sensitivity based estimation of leaf area index from spectral vegetation indices[J].ISPRS Journal of Photogrammetry and Remote Sensing,2012,70:15-25.
[16] Deering D W.Rangeland Reflectance Characteristics Measured by Aircraft and Spacecraft Sensors[D].College Station,Texas:Texas A and M University,1978:338.
[17] Chen J M,Pavlic G,Brown L,et al.Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements[J].Remote Sensing of Environment,2002,80(1):165-184.
[18] Huete A R.A soil-adjusted vegetation index(SAVI)[J].Remote Sensing of Environment,1988,25(3):295-309.
[19] Jiang Z Y,Huete A R,Didan K,et al.Development of a two-band enhanced vegetation index without a blue band[J].Remote Sensing of Environment,2008,112(10):3833-3845.
[20] Baret F,Jacquemoud S,Guyot G,et al.Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands[J].Remote Sensing of Environment,1992,41(2/3):133-142.
[21] 谷成燕,杜华强,周国模,等.基于PROSAIL辐射传输模型的毛竹林叶面积指数遥感反演[J].应用生态学报,2013,24(8):2248-2256.
[21] Gu C Y,Du H Q,Zhou G M,et al.Retrieval of leaf area index of Moso bamboo forest with Landsat Thematic Mapper image based on PROSAIL canopy radiative transfer model[J].Chinese Journal of Applied Ecology,2013,24(8):2248-2256.
[22] 蔡博峰,绍霞.基于PROSPECT+SAIL模型的遥感叶面积指数反演[J].国土资源遥感,2007,19(2):39-43.doi:10.6046/gtzyyg.2007.02.10.
[22] Cai B F,Shao X.Leaf area index petrieval based on remotely sensed data and PROSPECT+SAIL model[J].Remote Sensing for Land and Resources,2007,19(2):39-43.doi:10.6046/gtzyyg.2007.02.10.
[23] 余金林. 基于PROSAIL模型的青海湖流域草地叶面积指数反演[D].西宁:青海师范大学,2014.
[23] Yu J L.Leaf Area Index Inversion of Grass in Qinghai Lake Basin Based PROSAIL Model[D].Xining:Qinghai Normal University,2014.
[1] YAO Jinxi, ZHANG Zhi, ZHANG Kun. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
[2] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[3] ZHANG Chengye, XING Jianghe, LI Jun, SANG Xiao. Recognition of the spatial scopes of tailing ponds based on U-Net and GF-6 images[J]. Remote Sensing for Natural Resources, 2021, 33(4): 252-257.
[4] LIU Wanjun, GAO Jiankang, QU Haicheng, JIANG Wentao. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 97-106.
[5] SONG Chengyun, HU Guangcheng, WANG Yanli, TANG Chao. Downscaling FY-3B soil moisture based on apparent thermal inertia and temperature vegetation index[J]. Remote Sensing for Land & Resources, 2021, 33(2): 20-26.
[6] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[7] WU Xia, WANG Zhangjun, FAN Liqin, LI Lei. An applicability analysis of salinization evaluation index based on multispectral remote sensing to soil salinity prediction in Yinbei irrigation area of Ningxia[J]. Remote Sensing for Land & Resources, 2021, 33(2): 124-133.
[8] QIU Yifan, CHAI Dengfeng. A deep learning method for Landsat image cloud detection without manually labeled data[J]. Remote Sensing for Land & Resources, 2021, 33(1): 102-107.
[9] LIU Zhao, ZHAO Tong, LIAO Feifan, LI Shuai, LI Haiyang. Research and comparative analysis on urban built-up area extraction methods from high-resolution remote sensing image based on semantic segmentation network[J]. Remote Sensing for Land & Resources, 2021, 33(1): 45-53.
[10] WEI Hongyu, ZHAO Yindi, DONG Jihong. Cooling tower detection based on the improved RetinaNet[J]. Remote Sensing for Land & Resources, 2020, 32(4): 68-73.
[11] LIU Zhao, LIAO Feifan, ZHAO Tong. Remote sensing image urban built-up area extraction and optimization method based on PSPNet[J]. Remote Sensing for Land & Resources, 2020, 32(4): 84-89.
[12] CAI Yaotong, LIU Shutong, LIN Hui, ZHANG Meng. Extraction of paddy rice based on convolutional neural network using multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 97-104.
[13] GAO Kaixuan, JIAO Haiming, WANG Xinchuang. Inversion model of forest canopy height based on image texture,spectral and topographic features[J]. Remote Sensing for Land & Resources, 2020, 32(3): 63-70.
[14] CAI Zhiling, WENG Qian, YE Shaozhen, JIAN Cairen. Remote sensing image scene classification based on Inception-V3[J]. Remote Sensing for Land & Resources, 2020, 32(3): 80-89.
[15] WU Tong, PENG Ling, HU Yuan. Informal garbage dumps detection in high resolution remote sensing images based on SU-RetinaNet[J]. Remote Sensing for Land & Resources, 2020, 32(3): 90-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech