Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (1) : 209-215     DOI: 10.6046/gtzyyg.2020.01.28
|
Inversion of reservoir parameters in Shuguang Oil Production Plant of the Liaohe Oilfield based on InSAR deformation
Chong YANG1, Guoxiang LIU1,2(), Bing YU3, Bo ZHANG1, Rui ZHANG1,2, Xiaowen WANG1
1. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China
2. State-Province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Railway Safety, Chengdu 610031, China
3. School of Civil Engineering and Architecture, Southwest Petroleum University, Chengdu 610500, China
Download: PDF(4352 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The inversion of reservoir parameters and production for the oil field can grasp reservoir status and production changes in time and effectively monitor reservoir health and safety. At present, the study of reservoir parameter inversion is very insufficient in China. The authors chose Shuguang Oil Production Plant, the largest oil production plant in the Liaohe Oilfield, as the research object. Using 21 L-band ALOS/PALSAR data obtained from January 2007 to September 2010, the authors employed StaMPS to extract deformation results. Based on these deformation results, the authors used Mogi model and Finite Prolate Spheroidal model to invert and analyze reservoir parameters respectively, with the inversion results compared with those of Okada model. The results are as follows: ① The subsidence of Shuguang Oil Production Plant is remarkable. The maximum subsidence rate is -189.6 mm/year, the maximum cumulative subsidence is about 750 mm, and the subsidence area is about 28 km 2. ② Compared with Okada model and Mogi model, Finite Prolate Spheroidal model has the highest accuracy of reservoir depth inversion, and the simulated deformation results are in the best agreement with the observed deformation results, which shows that the inversion results of Finite Prolate Spheroidal model are more reliable and more suitable for the inversion of reservoir parameters in this oilfield. This study can provide scientific reference for InSAR subsidence monitoring and reservoir parameter inversion in the oilfield.

Keywords oilfield subsidence      StaMPS      Mogi model      Finite Prolate Spheroidal model      inversion of reservoir parameters     
:  TP79  
Corresponding Authors: Guoxiang LIU     E-mail: rsgxliu@swjtu.edu.cn
Issue Date: 14 March 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chong YANG
Guoxiang LIU
Bing YU
Bo ZHANG
Rui ZHANG
Xiaowen WANG
Cite this article:   
Chong YANG,Guoxiang LIU,Bing YU, et al. Inversion of reservoir parameters in Shuguang Oil Production Plant of the Liaohe Oilfield based on InSAR deformation[J]. Remote Sensing for Land & Resources, 2020, 32(1): 209-215.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.01.28     OR     https://www.gtzyyg.com/EN/Y2020/V32/I1/209
Fig.1  Study area
序号 成像时间 格式 序号 成像时间 格式
1 2007-01-31 FBS 12 2009-02-05 FBS
2 2007-06-18 FBD 13 2009-05-08 FBS
3 2007-08-03 FBD 14 2009-08-08 FBD
4 2007-09-18 FBD 15 2009-09-23 FBD
5 2007-11-03 FBS 16 2009-12-24 FBS
6 2007-12-19 FBS 17 2010-02-08 FBS
7 2008-02-03 FBS 18 2010-03-26 FBS
8 2008-03-20 FBS 19 2010-05-11 FBD
9 2008-05-05 FBD 20 2010-06-26 FBD
10 2008-06-20 FBD 21 2010-09-26 FBD
11 2008-12-21 FBS
Tab.1  Parameter of PALSAR images
Fig.2  Data processing of StaMPS
Fig.3  Distribution of spatial-temporal baseline for interference pairs
Fig.4  Subsidence velocity in the study area
Fig.5  Time series accumulative subsidence
Fig.6  Comparisons of observed deformation, modelled deformation and residual results
Fig.7  Residual distribution histograms
[1] 许德禹 . 储层和裂缝预测技术及在辽河油田开发的应用[D]. 大庆:东北石油大学, 2014.
[1] Xu D Y . Reservoir and Fracture Prediction Technology and Its Application in Liaohe Oilfield[D]. Daqing:Northeast Petroleum University, 2014.
[2] 鞠飞 . 辽河油田曙光采油厂高程引测的必要性[J]. 地下水, 2014,36(4):201-202.
[2] Ju F . Necessity of height guidance in Shuguang Oil Production of Liaohe Oilfield[J]. Ground Water, 2014,36(4):201-202.
[3] 孙赫, 张勤, 杨成生 , 等. PS-InSAR技术监测分析辽宁盘锦地区地面沉降[J]. 上海国土资源, 2014(4):68-71.
[3] Sun H, Zhang Q, Yang C S , et al. PS-InSAR monitoring of land subsidence in the Panjin region of Liaoning Province[J]. Shanghai Land and Resources, 2014(4):68-71.
[4] Kooij M . Land subsidence measurements at the Belridge Oil Fields from ERS InSAR data[C]// Proceedings of the Third ERS Symposium,Florence: 1997, 1853-1858.
[5] Fielding E J, Blom R G, Goldstein R M . Rapid subsidence over oil fields measured by SAR interferometry[J]. Geophysical Research Letters, 1998,25(17):3215-3218.
[6] 李德仁 . InSAR技术进步与地面沉降监测应用[J]. 上海国土资源, 2013,34(4):1-6.
[6] Li D R . InSAR Technological progress and its application to land subsidence monitoring[J]. Shanghai Land and Resources, 2013,34(4):1-6.
[7] 母景琴, 姚国清 . 干涉雷达时间序列分析方法在地面沉降监测中的应用[J]. 国土资源遥感, 2007,19(3):28-30.doi: 10.6046/gtzyyg.2007.03.06.
[7] Mu J Q, Yao G Q . Time series Radar interferometry method for surface deformation monitoring[J]. Remote Sensing for Land and Resources, 2007,19(3):28-30.doi: 10.6046/gtzyyg.2007.03.06.
[8] 葛大庆, 王艳, 范景辉 , 等. 地表形变D-InSAR监测方法及关键问题分析[J]. 国土资源遥感, 2007,19(4):14-22.doi: 10.6046/gtzyyg.2007.04.04.
[8] Ge D Q, Wang Y, Fan J H , et al. A study of surface deformation monitoring using differential SAR interferometry technique and an analysis of its key problems[J]. Remote Sensing for Land and Resources, 2007,19(4):14-22.doi: 10.6046/gtzyyg.2007.04.04.
[9] Zebker H A, Rosen P A, Hensley S . Atmospheric effects in interferometric synthetic aperture Radar surface deformation and topographic maps[J]. Journal of Geophysical Research, 1997,102(B4):7547-7563.
[10] Ferretti A, Prati C, Rocca F . Non-linear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000,38(5):2202-2212
[11] 刘国祥, 张瑞, 李陶 , 等. 基于多卫星平台永久散射体雷达干涉提取三维地表形变速度场[J]. 地球物理学报, 2012,55(8):2598-2610.
[11] Liu G X, Zhang R, Li T , et al. Extracting 3D ground deformation velocity field by multi-platform persistent scatter SAR interferometry[J]. Chinese Journal of Geophysics, 2012,55(8):2598-2610.
[12] 唐嘉, 刘国祥, 宋云帆 , 等. PALSAR和ASAR PSI显著地表沉降探测与分析[J]. 遥感学报, 2015,19(6):1019-1029.
[12] Tang J, Liu G X, Song Y F , et al. Significant subsidence detection and analysis by PALSAR and ASAR PSI[J]. Journal of Remote Sensing, 2015,19(6):1019-1029.
[13] Hooper A, Zebker H, Segall P , et al. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers[J]. Geophysical Research Letters. 2004,31(23):L23611.
[14] Hooper A . Persistent Scatterer Radar Interferometry for Crustal Deformation Studies and Modeling of Volcanic Deformation[D]. San Francisco:Stanford University, 2006.
[15] Vasco D W, Ferretti A, Novali F . Estimating permeability from quasi-static deformation:Temporal variations and arrival-time inversion[J]. Geophysics, 2008,73(6):O37-O52.
[16] Vasco D W, Ferretti A, Novali F . Reservoir monitoring and characterization using satellite geodetic data:Interferometric synthetic aperture Radar observations from the Krechba field,Algeria[J]. Geophysics, 2008, 76(6:WA113-WA122.
[17] Klemm H, Quseimi I, Novali F , et al. Monitoring horizontal and vertical surface deformation over a hydrocarbon reservoir by PSInSAR[J]. First Break, 2010,28(5):29-37.
[18] Khakim M Y N, Tsuji T, Matsuoka T . Geomechanical modeling for InSAR-derived surface deformation at steam-injection oil sand fields[J]. Journal of Petroleum Science and Engineering, 2012, 96-97:152-161.
[19] Ji L Y, Zhang Y, Wang Q L , et al. Detecting land uplift associated with enhanced oil recovery using InSAR in the Karamay oil field,Xinjiang,China[J]. International Journal of Remote Sensing, 2016,37(7):1527-1540.
[20] 刘一霖 . 黄河三角洲地面沉降时序InSAR技术监测与地下流体开采相关性分析[D]. 青岛:中国科学院海洋研究所, 2016.
[20] Liu Y L . Land Subsidence Monitoring and Correlation Analysis with Ground Fluid Exploitation Using Time Series InSAR Technique over the Yellow River Delta (China) [D]. Qingdao:Institute of Oceanography,Chinese Academy of Sciences, 2016.
[21] Sun H, Zhang Q, Zhao C Y , et al. Monitoring land subsidence in the southern part of the lower Liaohe plain,China with a multi-track PS-InSAR technique[J]. Remote Sensing of Environment, 2017,188:73-84.
[22] Carnec C, Fabriol H . Monitoring and modeling land subsidence at the Cerro Prieto Geothermal Field,Baja California, Mexico,using SAR interferometry[J]. Geophysical Research Letters, 1999,26(9):1211-1214.
[23] Zhong L, Timothy M . Interferometric synthetic aperture Radar study of Okmok volcano,Alaska,1992—2003:Magma supply dynamics and postemplacement lava flow deformation[J]. Journal of Geophysical Research, 2005,110(B2):B02403.
[24] Mogi K . Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them[J]. Bulletin of the Earthquake Research Institute,University of Tokyo, 1958,36:99-134.
[25] Davis P M . Surface deformation due to inflation of an arbitrarily oriented triaxial ellipsoidal cavity in an elastic half-space,with reference to Kilauea volcano,Hawaii[J]. Journal of Geophysical Research:Solid Earth, 1986,91(B7):7429-7438.
[26] Yang X M, Davis P M, Dieterich J H . Deformation from inflation of a dipping finite prolate spheroid in an elastic half-space as a model for volcanic stressing[J]. Journal of Geophysical Research:Solid Earth, 1988,93(B5):4249-4257.
[27] Press W H, Flannery B P, Teukolsky S A , et al. Numerical Recipes in C:the Art of Scientific Computing[M]. Cambridge: Cambridge University Press 1992: 176-177.
[28] 沈阳地质矿产研究所. 东北平原地面沉降调查[R]. 沈阳:沈阳地质矿产研究所, 2009.
[28] Shenyang Institute of Geology and Mineral Resources. The Land Subsidence Investigation of Northeast Plain[R]. Shenyang:Shenyang Institute of Geology and Mineral Resources, 2009.
[1] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[2] REN Chaofeng, PU Yuchi, ZHANG Fuqiang. A method for extracting match pairs of UAV images considering geospatial information[J]. Remote Sensing for Natural Resources, 2022, 34(1): 85-92.
[3] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[4] PAN Jianping, XU Yongjie, LI Mingming, HU Yong, WANG Chunxiao. Research and development of automatic detection technologies for changes in vegetation regions based on correlation coefficients and feature analysis[J]. Remote Sensing for Natural Resources, 2022, 34(1): 67-75.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] JIANG Na, CHEN Chao, HAN Haifeng. An optimization method of DEM resolution for land type statistical model of coastal zones[J]. Remote Sensing for Natural Resources, 2022, 34(1): 34-42.
[7] WU Fang, LI Yu, JIN Dingjian, LI Tianqi, GUO Hua, ZHANG Qijie. Application of 3D information extraction technology of ground obstacles in the flight trajectory planning of UAV airborne geophysical exploration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 286-292.
[8] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[9] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[10] YAO Jinxi, ZHANG Zhi, ZHANG Kun. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
[11] WU Yijie, KONG Xuesong. Simulation and development mode suggestions of the spatial pattern of “ecology-agriculture-construction” land in Jiangsu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 238-248.
[12] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[13] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[14] SUN Yiming, ZHANG Baogang, WU Qizhong, LIU Aobo, GAO Chao, NIU Jing, HE Ping. Application of domestic low-cost micro-satellite images in urban bare land identification[J]. Remote Sensing for Natural Resources, 2022, 34(1): 189-197.
[15] ZHENG Xiucheng, ZHOU Bin, LEI Hui, HUANG Qiyu, YE Haolin. Extraction and spatio-temporal change analysis of the tidal flat in Cixi section of Hangzhou Bay based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 18-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech