Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (3) : 18-25     DOI: 10.6046/gtzyyg.2018.03.03
|
An improved ICM algorithm for remote sensing image segmentation
Jun YANG1, Jianjie PEI2
1. School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2. Faculty of Geomatics, Lanzhou Jiaotong University & Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China;
Download: PDF(4392 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The traditional iterated conditional model(ICM)algorithm, when applied to remote sensing image segmentation, is easy to show discrete patches and isolated points. In view of this phenomenon, an improved ICM remote sensing segmentation algorithm is proposed which is based on Markov random field(MRF). First, the robust bilateral filter(BF)which is efficient in preserving edges and denoising was merged and used for the preprocessing of the remote sensing image, and then the Otsu algorithm was applied to obtaining the initial clusters. The algorithm could overcome some problems that occurred in the traditional K-means algorithm such as the inability in determining the number of clusters, difficulty in controlling algorithm complexities, and appearance of overlapping in the segmented regions. Next, the MRF was used to describe the pixel spatial correlation forming ICM remote sensing image segmentation algorithm with contextual information. By using remote sensing image data validation, the approach proposed in this paper realizes more reliable segmentation results in comparison with the traditional ICM algorithm.

Keywords iterated conditional model(ICM)      Markov random field(MRF)      Otsu      bilateral filter(BF)      image segmentation     
:  TP751.1  
Issue Date: 10 September 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jun YANG
Jianjie PEI
Cite this article:   
Jun YANG,Jianjie PEI. An improved ICM algorithm for remote sensing image segmentation[J]. Remote Sensing for Land & Resources, 2018, 30(3): 18-25.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.03.03     OR     https://www.gtzyyg.com/EN/Y2018/V30/I3/18
Fig.1  Execution process of ICM algorithm
Fig.2  Comparison of segmentation results of Grand Canyon aerial image by using different algorithms
分割方法 分割准确率/% Kappa
传统ICM算法 0.752 8 0.741 5
无滤波ICM算法 0.852 2 0.801 7
本文算法 0.929 7 0.883 4
Tab.1  Segmentation accuracy of different algorithms
Fig.3  Comparison of segmentation results of Komodo National Park image by using different algorithms
Fig.4  Comparison of segmentation results of Alajuela Lake multispectral image by using different algorithms
Fig.5  Comparison of segmentation results of Chara sand multispectral remote sensing image by using different algorithms
Fig.6  Relationship between Kappa coefficients and number of clusters
Fig.7  Comparison of segmentation results of Rakaia River aerial images by using different algorithms
Fig.8  Relationship between segmentation accuracy and number of clusters from aerial images of Rakaia River
[1] Zheng C, Zhang Y, Wang L G . Multilayer semantic segmentation of remote-sensing imagery using a hybrid object-based Markov random field model[J]. International Journal of Remote Sensing, 2016,37(23):5505-5532.
doi: 10.1080/01431161.2016.1244364 url: https://www.tandfonline.com/doi/full/10.1080/01431161.2016.1244364
[2] Gaetano R, Masi G, Poggi G , et al. Marker-controlled watershed-based segmentation of multiresolution remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(6):2987-3004.
doi: 10.1109/TGRS.2014.2367129 url: http://ieeexplore.ieee.org/document/6980061/
[3] 梁若飞, 杨风暴, 王毅敏 , 等. 一种类矩形引导的玉米田遥感图像分割算法[J]. 国土资源遥感, 2016,28(3):53-59.doi: 10.6046/gtzyyg.2016.03.09.
doi: 10.6046/gtzyyg.2016.03.09 url: http://d.wanfangdata.com.cn/Periodical/gtzyyg201603009
[3] Liang R F, Yang F B, Wang Y M , et al. A near-rectangle guided segmentation method for remote sensing images of corn field areas[J]. Remote Sensing for Land and Resources, 2016,28(3):53-59.doi: 10.6046/gtzyyg.2016.03.09.
[4] 鲁恒, 付萧, 刘超 , 等. 基于无人机影像的快速分割方法[J]. 国土资源遥感, 2016,28(2):72-78.doi: 10.6046/gtzyyg.2016.02.12.
doi: 10.6046/gtzyyg.2016.02.12
[4] Lu H, Fu X, Liu C , et al. Study of method for fast segmentation based on UAV image[J]. Remote Sensing for Land and Resources, 2016,28(2):72-78.doi: 10.6046/gtzyyg.2016.02.12.
[5] Kato Z, Zerubia J . Markov Random Fields in Image Segmentation[M]. Hanover:Now Publisher, 2012.
[6] Liu G Y, Wang L G, Hong L . Supervised image segmentation using region-level TS-MRF models[J]. Journal of Computational Information Systems, 2013,9(23):9533-9540.
doi: 10.12733/jcis7826 url: http://www.researchgate.net/publication/282266224_Supervised_image_segmentation_using_region-level_TS-MRF_models
[7] Doulgeris A P . An automatic u-distribution and Markov random field segmentation algorithm for PolSAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(4):1819-1827.
doi: 10.1109/TGRS.2014.2349575 url: http://ieeexplore.ieee.org/document/6891291/
[8] Rother C, Kolmogorov V, Blake A . "Grabcut":Interactive foreground extraction using iterated graph cuts[J]. ACM Transactions on Graphics(TOG), 2004,23(3):309-314.
doi: 10.1145/1015706 url: http://portal.acm.org/citation.cfm?doid=1015706
[9] Tso B C K, Mather P M . Classification of multisource remote sensing imagery using a genetic algorithm and Markov random fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999,37(3):1255-1260.
doi: 10.1109/36.763284 url: http://ieeexplore.ieee.org/document/763284/
[10] Chou P B, Brown C M . The theory and practice of Bayesian image labeling[J]. International Journal of Computer Vision, 1990,4(3):185-210.
doi: 10.1007/BF00054995 url: http://link.springer.com/10.1007/BF00054995
[11] 侯一民, 郭雷 . 一种基于马尔可夫随机场的SAR图像分割新方法[J]. 电子与信息学报, 2007,29(5):1069-1072.
doi: 10.3724/SP.J.1146.2005.01359 url: http://d.wanfangdata.com.cn/Periodical/dzkxxk200705014
[11] Hou Y M, Guo L . A novel SAR image segmentation method based on Markov random field[J]. Journal of Electronics & Information Technology, 2007,29(5):1069-1072.
[12] 杨红磊, 彭军还 . 基于马尔可夫随机场的模糊c-均值遥感影像分类[J]. 测绘学报, 2012,41(2):213-218.
[12] Yang H L, Peng J H . Remote sensing classification based on Markov random field and fuzzy c-means clustering[J]. Acta Geodaeticaet Cartographica Sinica, 2012,41(2):213-218.
[13] 谢昭, 谢年群, 姚婷婷 . 一种图像空间下的ICM聚类方法[J]. 电路与系统学报, 2013,18(2):277-283,290.
doi: 10.3969/j.issn.1007-0249.2013.02.047 url: http://d.wanfangdata.com.cn/Periodical/dlyxtxb201302047
[13] Xie Z, Xie N Q, Yao T T . An ICM clustering method based on image space[J]. Journal of Circuits and Systems, 2013,18(2):277-283,290.
[14] Baumgartner J, Gimenez J, Scavuzzo M , et al. A new approach to segmentation of multispectral remote sensing images based on MRF[J]. IEEE Geoscience and Remote Sensing Letters, 2015,12(8):1720-1724.
doi: 10.1109/LGRS.2015.2421736 url: http://ieeexplore.ieee.org/document/7098347/
[15] 刘国英, 马国锐, 王雷光 , 等. 基于Markov随机场的小波域图像建模及分割——Matlab环境[M]. 北京: 科学出版社, 2010.
[15] Liu G Y, Ma G R, Wang L G , et al. Image Modeling and Segmentation of Wavelet Domain Based on Markov Random Field[M]. Beijing: Science Press, 2010.
[16] Geman S, Geman D .Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, PAMI-6(6):721-741.
doi: 10.1080/02664769300000058 pmid: 22499653 url: http://europepmc.org/abstract/med/22499653
[17] Sarkar A, Biswas M K, Kartikeyan B , et al. A MRF model-based segmentation approach to classification for multispectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002,40(5):1102-1113.
doi: 10.1109/TGRS.2002.1010897 url: http://ieeexplore.ieee.org/document/1010897/
[18] Li S Z . Markov Random Field Modeling in Image Analysis[M]. 3rd ed.London:Springer, 2009.
[19] Berthod M, Kato Z, Yu S , et al. Bayesian image classification using Markov random fields[J]. Image and Vision Computing, 1996,14(4):285-295.
doi: 10.1007/978-94-017-2217-9_45 url: http://linkinghub.elsevier.com/retrieve/pii/0262885695010726
[20] 李旭超, 朱善安 . 图像分割中的马尔可夫随机场方法综述[J]. 中国图象图形学报, 2007,12(5):789-798.
doi: 10.11834/jig.20070504
[20] Li X C, Zhu S A . A survey of the Markov random field method for image segmentation[J]. Journal of Image and Graphics, 2007,12(5):789-798.
[21] Duda R O, Hart P E, Stork D G. 模式分类[M]. 李宏东, 姚天翔译.2版.北京:机械工业出版社, 2003.
[21] Duda R O, Hart P E, Stork D G. Pattern Classification[M]. Translated by Li H D, Yao T X.2nd ed.Beijing:China Machine Press, 2003.
[1] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[2] FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 153-161.
[3] Biqing WANG, Wenquan HAN, Chi XU. Winter wheat planting area identification and extraction based on image segmentation and NDVI time series curve classification model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 219-225.
[4] Shicai ZHU, Xiaotong ZHAI, Zongwei WANG. Segmentation of large scale remote sensing image based on Mean Shift[J]. Remote Sensing for Land & Resources, 2020, 32(1): 13-18.
[5] Peiqing LOU, Xiaoyu CHEN, Shutong WANG, Bolin FU, Yongyi HUANG, Tingyuan TANG, Ming LING. Object recognition of karst farming area based on UAV image: A case study of Guilin[J]. Remote Sensing for Land & Resources, 2020, 32(1): 216-223.
[6] Dechao ZHAI, Yanan FAN, Yanan ZHOU. Multi-scale segmentation of satellite imagery by edge-incorporated weighted aggregation[J]. Remote Sensing for Land & Resources, 2019, 31(3): 36-42.
[7] Bingxiu YAO, Liang HUANG, Yansong XU. A high resolution remote sensing image segmentation method based on superpixel and graph theory[J]. Remote Sensing for Land & Resources, 2019, 31(3): 72-79.
[8] Yongmei ZHANG, Haiyan SUN, Yulong XU. An improved multispectral image segmentation method based on super-pixels[J]. Remote Sensing for Land & Resources, 2019, 31(1): 58-64.
[9] Zhengwei GUO, Le WANG, Guolei SONG. SAR image land and water segmentation algorithm based on hybrid fuzzy[J]. Remote Sensing for Land & Resources, 2018, 30(4): 62-67.
[10] Lingyu YIN, Xianlin QIN, Guifen SUN, Shuchao LIU, Xiaofeng ZU, Xiaozhong CHEN. The method for detecting forest cover change in GF-1images by using KPCA[J]. Remote Sensing for Land & Resources, 2018, 30(1): 95-101.
[11] Liang LI, Lei WANG, Kai WANG, Sheng LI. A change detection method for vector map and remote sensing imagery based on object heterogeneity[J]. Remote Sensing for Land & Resources, 2018, 30(1): 30-36.
[12] ZHAO Qingping. Wide-swath SAR ice images segmentation based on Lambert’s law[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 67-71.
[13] ZHU Hongchun, HUANG Wei, LIU Haiying, ZHANG Zhongfang, WANG Bin. Research on object-oriented remote sensing change detection method based on KL divergence[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 46-52.
[14] SU Tengfei, ZHANG Shengwei, LI Hongyu. Segmentation algorithm based on texture feature and region growing for high-resolution remote sensing image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 72-81.
[15] ZHANG Tao, YANG Xiaomei, TONG Liqiang, HE Peng. Selection of best-fitting scale parameters in image segmentation based on multiscale segmentation image database[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 59-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech