Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (1) : 61-66     DOI: 10.6046/zrzyyg.2021122
|
Change detection of high-resolution remote sensing images based on Siamese network
XUE Bai(), WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu
Land Satellite Remote Sensing Application Center, Ministry of Natural Resources, Beijing 100048, China
Download: PDF(3110 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

With the improvement of the spatial resolution of remote sensing images, the imaging features of ground objects have become increasingly complex. As a result, the change detection methods of remote sensing images based on texture expression and local semantics are difficult to meet the demand. To improve the change detection accuracy of high-resolution remote sensing images, this study constructed a large-scale remote sensing-based human activity change detection dataset (HRHCD-1.0) with a high resolution of 0.8~2 m. Moreover, this study designed an attention-based Siamese change detection network with a strong capability to extract contextual semantic features by introducing spatial attention and channel attention mechanisms. In the model comparative experiment, the attention-based Siamese change detection network proposed in this study increased the mean intersection over union on the validation set by 24% and showed more complete detection results compared to the models using non-attention mechanisms, effectively alleviating the problems of poor boundary, local omission, and holes of models using non-attention mechanisms. The post-processing method allows for small polygon removal, hole filling, and graphic smoothing of the detection results, improving the processing graphic effects of polygons. Furthermore, the increase in the sample size in the training of change detection significantly improves the application accuracy and generalization ability of the attention-based Siamese change detection network proposed in this study.

Keywords high-resolution remote sensing images      change detection      deep learning      attention mechanism     
ZTFLH:  TP79  
Issue Date: 14 March 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bai XUE
Yizhe WANG
Shuhan LIU
Mingyu YUE
Yiying WANG
Shihu ZHAO
Cite this article:   
Bai XUE,Yizhe WANG,Shuhan LIU, et al. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021122     OR     https://www.gtzyyg.com/EN/Y2022/V34/I1/61
数据集 变化类型 分辨率/
m
数据量/
数据尺
寸/像素
LEVIR-CD[11] 建筑物 0.5 637 1 024×1 024
Google Data-
set[12]
建筑物 0.55 20 1 006×1 168~
4 936×5 224
WHUCD[13] 建筑物 0.2 1 15 354×32 507
AICD[14] 建筑物、临时目标 约0.1~
0.5
10 000 256×256
SECOND[15] 多类型 约1 4 662 512×512
HRSCD[16] 多类型 0.5 2 10 000×10 000
Tab.1  Main open source high-resolution remote sensing change detection data set
Fig.1  Examples of positive and negative examples of HRHCD data set
Fig.2  Siamese attention mechanism change detection network structure
类别 前时相影像 后时相影像 Siam-Diff结果 Siam-Conc结果 Siam-Atte结果
建筑群
推填土
道路
Tab.2  Comparison of detection results of different networks
Fig.3  Results with post-processing optimization
样本量/组 预测图斑/个 真值图斑/个 R/% P/%
5 000 1 197 390 51.3 16.8
10 000 734 390 66.9 35.6
20 000 667 390 72.8 42.7
Tab.3  Model application effects under different training data scales
Fig.4  Examples of misdetected patterns for non-business types
[1] Tewkesbury A P, Comber A J, Tate N J, et al. A critical synjournal of remotely sensed optical image change detection techniques[J]. Remote Sensing of Environment, 2015, 160:1-14.
doi: 10.1016/j.rse.2015.01.006 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425715000152
[2] Bruzzone L, Prieto F. Automatic analysis of the difference image for unsupervised change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(3):1171-1182.
doi: 10.1109/36.843009 url: http://ieeexplore.ieee.org/document/843009/
[3] Celik T. Unsupervised change detection in satellite images using principal component analysis and K-means clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4):772-776.
doi: 10.1109/LGRS.2009.2025059 url: http://ieeexplore.ieee.org/document/5196726/
[4] 张良培, 武辰. 多时相遥感影像变化检测的现状与展望[J]. 测绘学报, 2017, 46(10):1447-1459.
[4] Zhang L P, Wu C. Advance and future development of change detection for multi-temporal remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1447-1459.
[5] Saux B L, Randrianarivo H. Urban change detection in SAR images by interactive learning[C]// IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2013:3990-3993.
[6] Jackson R D. Spectral indices in N-space[J]. Remote Sensing of Environment, 1983, 13(5):409-421.
doi: 10.1016/0034-4257(83)90010-X url: https://linkinghub.elsevier.com/retrieve/pii/003442578390010X
[7] 黄维, 黄进良, 王立辉, 等. 基于PCA的变化向量分析法遥感影像变化检测[J]. 自然资源遥感, 2016, 28(1):22-27.doi: 10.6046/gtzyyg.2016.01.04.
doi: 10.6046/gtzyyg.2016.01.04
[7] Huang W, Huang J L, Wang L H, et al. Remote sensing image change detection based on change vector analysis of PCA compoment[J]. Remote Sensing for Land and Resources, 2016, 28(1):22-27.doi: 10.6046/gtzyyg.2016.01.04.
doi: 10.6046/gtzyyg.2016.01.04
[8] 李亮, 舒宁, 王凯, 等. 融合多特征的遥感影像变化检测方法[J]. 测绘学报, 2014, 43(9):945-953.
[8] Li L, Shu N, Wang K, et al. Change detection method for remote sensing images based on multi-features fusion[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9):945-953.
[9] Zhang H, Gong M G, Zhang P Z, et al. Feature-level change detection using deep representation and feature change analysis for multispectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11):1666-1670.
doi: 10.1109/LGRS.2016.2601930 url: http://ieeexplore.ieee.org/document/7559716/
[10] Peng D F, Zhang Y J, Guan H Y. End-to-end change detection for high resolution satellite images using improved UNet++[J]. Remote Sensing, 2019, 11(11):1382.
doi: 10.3390/rs11111382 url: https://www.mdpi.com/2072-4292/11/11/1382
[11] Chen H, Shi Z. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10):1662.
doi: 10.3390/rs12101662 url: https://www.mdpi.com/2072-4292/12/10/1662
[12] Peng D, Bruzzone L, Zhang Y, et al. SemiCDNet:A semisupervised convolutional neural network for change detection in high resolution remote-sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7):5891-5906.
doi: 10.1109/TGRS.2020.3011913 url: https://ieeexplore.ieee.org/document/9161009/
[13] Ji S P, Wei S Q, Lu M, et al. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1):574-586.
doi: 10.1109/TGRS.2018.2858817 url: https://ieeexplore.ieee.org/document/8444434/
[14] Bourdis N, Marraud D, Sahbi H. Constrained optical flow for aerial image change detection[C]// 2011 IEEE International Geoscience and Remote Sensing Symposium, 2011:4176-4179.
[15] Yang K P, Xia G S, Liu Z C, et al. Asymmetric siamese networks for semantic change detection[C/OL].[2020-10-12].https://arxiv.org/abs/2010.05687v1.
url: https://arxiv.org/abs/2010.05687v1.
[16] Daudt R C, Saux B L, Boulch A, et al. Multitask learning for large-scale semantic change detection[J]. Computer Vision and Image Understanding, 2019, 187:102783.
doi: 10.1016/j.cviu.2019.07.003 url: https://linkinghub.elsevier.com/retrieve/pii/S1077314219300992
[17] Daudt R C, Saux B L, Boulch A. Fully convolutional siamese networks for change detection[C]// 2018 25th IEEE International Conference on Image Processing (ICIP).IEEE, 2018.
[18] Chen J, Yuan Z, Peng J, et al. DASNet:Dual attentive fully convolutional siamese networks for change detection of high resolution satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:1194-1206.
doi: 10.1109/JSTARS.4609443 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
[1] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[2] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[3] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[4] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[5] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[6] DIAO Mingguang, LIU Yong, GUO Ningbo, LI Wenji, JIANG Jikang, WANG Yunxiao. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
[7] ZHENG Zongsheng, LIU Haixia, WANG Zhenhua, LU Peng, SHEN Xukun, TANG Pengfei. Improved 3D-CNN-based method for surface feature classification using hyperspectral images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 105-111.
[8] QIU Lei, ZHANG Xuezhi, HAO Dawei. VideoSAR moving target detection and tracking algorithm based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(2): 157-166.
[9] ZHANG Ke, ZHANG Gengsheng, WANG Ning, WEN Jing, LI Yu, YANG Jun. A forecasting method for water table depths in areas with power transmission lines based on remote sensing and deep learning models[J]. Remote Sensing for Natural Resources, 2023, 35(1): 213-221.
[10] JIN Yuanhang, XU Maolin, ZHENG Jiayuan. A dead tree detection algorithm based on improved YOLOv4-tiny for UAV images[J]. Remote Sensing for Natural Resources, 2023, 35(1): 90-98.
[11] HU Jianwen, WANG Zeping, HU Pei. A review of pansharpening methods based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(1): 1-14.
[12] ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
[13] LYU Yanan, ZHU Hong, MENG Jian, CUI Chengling, SONG Qiqi. A review and adaptability study of deep learning models for vehicle detection based on high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 22-32.
[14] TAN Hai, ZHANG Rongjun, FAN Wenfeng, ZHANG Yifang, XU Hang. Classification and detection of radiation anomalies in Chinese optical satellite images by integrating multi-scale features[J]. Remote Sensing for Natural Resources, 2022, 34(4): 97-104.
[15] SU Wei, LIN Yangyang, YUE Wen, CHEN Yingbiao. Identification of mariculture areas in Guangdong Province and remote sensing monitoring of their spatial and temporal changes based on the U-Net convolutional neural network[J]. Remote Sensing for Natural Resources, 2022, 34(4): 33-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech